Fe/D

0.01

x

Diffractive Contribution to Deep Inelastic Scattering: Implications for QCD Sum Rules and Nuclear Parton Distributions

Anti-Shadowing

Ι

The Diffractive Contribution to Deep Inelastic Lepton-Proton Scattering: Implications for QCD Momentum Sum Rules and Parton Distributions

Stanley J. Brodsky,¹ Valery E. Lyubovitskij,^{2,3} and Ivan Schmidt³

¹SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA ²Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D-72076 Tübingen, Germany ³Departamento de Física y Centro Científico Tecnológico de Valparaíso-CCTVal, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

Is the Momentum Sum Rule Valid for Nuclear Structure Functions?

Stanley J. Brodsky

SLAC National Accelerator Laboratory, Stanford University

Ivan Schmidt

Departamento de Física y Centro Científico Tecnológico de Valparaíso-CCTVal Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

Simonetta Liuti*

Department of Physics, University of Virginia, Charlottesville, VA 22904, USA. (Dated: August 20, 2019)

Remarkable observation at HERA

10% to 15% ofDIS events are diffractive !

e

р

. Fraction r of events with a large rapidity gap, $\eta_{\rm max}$ < 1.5, as a function of $Q_{\rm DA}^2$ for two ranges of $x_{\rm DA}$. No acceptance corrections have been applied.

ZEUS

100

M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993)

DDIS is leading twist, Bjorken scaling

Diffractive Structure Function F₂^D

Diffractive inclusive cross section

$$\begin{split} \frac{\mathrm{d}^3 \sigma_{NC}^{diff}}{\mathrm{d} x_{I\!\!P} \,\mathrm{d}\beta \,\mathrm{d}Q^2} &\propto \frac{2\pi\alpha^2}{xQ^4} F_2^{D(3)}(x_{I\!\!P},\beta,Q^2) \\ F_2^D(x_{I\!\!P},\beta,Q^2) &= f(x_{I\!\!P}) \cdot F_2^{I\!\!P}(\beta,Q^2) \end{split}$$

extract DPDF and xg(x) from scaling violation Large kinematic domain $3 < Q^2 < 1600 \, {
m GeV^2}$ Precise measurements sys 5%, stat 5–20%

Bjorken Scaling, Leading Twist

Can the Momentum Sum Rule be applied?

Measurements of hadron LF wavefunction are at fixed LF time

Like a flash photograph

Fixed
$$\tau = t + z/c$$

$$x_{bj} = x = \frac{k^+}{P^+}$$

Invariant under boosts! Independent of P[#]

Light-Front QCD Physical gauge: $A^+ = 0$

Exact frame-independent formulation of nonperturbative QCD!

$$\begin{split} L^{QCD} \rightarrow H_{LF}^{QCD} \\ H_{LF}^{QCD} &= \sum_{i} [\frac{m^{2} + k_{\perp}^{2}}{x}]_{i} + H_{LF}^{int} \\ H_{LF}^{int}: \text{ Matrix in Fock Space} \\ H_{LF}^{QCD} |\Psi_{h} \rangle &= \mathcal{M}_{h}^{2} |\Psi_{h} \rangle \\ |p, J_{z} \rangle &= \sum_{n=3}^{\infty} \psi_{n}(x_{i}, \vec{k}_{\perp i}, \lambda_{i}) |n; x_{i}, \vec{k}_{\perp i}, \lambda_{i} \rangle \end{split}$$

Eigenvalues and Eigensolutions give Hadronic Spectrum and Light-Front wavefunctions

LFWFs: Off-shell in P- and invariant mass

 I_{LF}^{int}

(c)

$$|p, J_{z} >= \sum_{n=3} \psi_{n}(x_{i}, \vec{k}_{\perp i}, \lambda_{i})|n; x_{i}, \vec{k}_{\perp i}, \lambda_{i} >$$

$$x_{i} = \frac{k_{i}^{+}}{P^{+}}, \sum_{i} k_{i}^{+} = P^{+}$$

$$\sum_{i=1}^{n} x_{i} = 1, \sum_{i=1}^{n} \vec{k}_{\perp i} = 0$$

Light-Front Wavefunctions $\psi(x_i, k_{\perp i}, \lambda_i)$ obey charge and momentum sum rules

$|p,S_z\rangle = \sum_{n=3} \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fractions

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i=1}^{n} k_{i}^{+} = P^{+}, \ \sum_{i=1}^{n} x_{i} = 1, \ \sum_{i=1}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks s(x), c(x), b(x) at high x !

$$\begin{aligned} \bar{s}(x) \neq s(x) \\ \bar{u}(x) \neq \bar{d}(x) \end{aligned}$$

Fixed LF time

Deuteron: Hídden Color

Deep Inelastic Electron-Proton Scattering

Front Form

Drell, sjb

$$\frac{F_{2}(q^{2})}{2M} = \sum_{a} \int [dx][d^{2}\mathbf{k}_{\perp}] \sum_{j} e_{j} \frac{1}{2} \times \text{Drell, sjb}$$

$$\begin{bmatrix} -\frac{1}{q^{L}}\psi_{a}^{\uparrow *}(x_{i}, \mathbf{k}'_{\perp i}, \lambda_{i}) \psi_{a}^{\downarrow}(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}) + \frac{1}{q^{R}}\psi_{a}^{\downarrow *}(x_{i}, \mathbf{k}'_{\perp i}, \lambda_{i}) \psi_{a}^{\uparrow}(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}) \end{bmatrix}$$

$$\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_{i}\mathbf{q}_{\perp} \qquad \mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_{j})\mathbf{q}_{\perp}$$

$$\mathbf{q}_{R,L} = q^{x} \pm iq^{y}$$

$$\mathbf{k}'_{\perp j} = \mathbf{k}'_{\perp j} + \mathbf{q}'_{\perp}$$

Must have $\Delta \ell_z = \pm 1$ to have nonzero $F_2(q^2)$

Nonzero Proton Anomalous Moment -->

Nonzero orbítal quark angular momentum

Dae Sung Hwang, Bo-Qiang Ma, Ivan Schmidt, sjb

Terayev, Okun: B(0) Must vanish because of Equivalence Theorem

graviton

Vanishing Anomalous gravitomagnetic moment B(0)

Advantages of the Dirac's Front Form for Hadron Physics Poincare' Invariant

Physics Independent of Observer's Motion

- Measurements are made at fixed τ
- Causality is automatic
- Structure Functions are squares of LFWFs
- Form Factors are overlap of LFWFs
- LFWFs are frame-independent: no boosts, no pancakes!

Penrose, Terrell, Weisskopf

- Same structure function measured at an e p collider and the proton rest frame
- No dependence of hadron structure on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial up to zero modes
- Implications for Cosmological Constant

Hoyer, Marchal, Peigne, Sannino, sjb

QCD Mechanism for DDIS and Rapidity Gaps

Stodolsky Pumplin, sjb Gribov

Theory of Nuclear Shadowing in DIS

Shadowing depends on understanding leading twist-diffraction in DIS

Diffraction via Pomeron gives destructive interference!

Shadowing

Shadowing depends on understanding leading-twist diffraction in DIS

nterferei ice!

ersal

Comparison of the ratio of iron to deuteron nuclear structure functions measured in deep inelastic neutrinonucleus scattering (NuTeV [2], CDHSW [8]), and muonnucleus scattering (BCDMS [9] and NMC [10, 11]). All data are displayed in the online Durham HepData Project Database [12]. Anti-shadowing is absent in the neutrino charged current data.

Does Díffractive DIS Obey Momentum and other Sum Rules?

Is Antíshadowíng ín DIS Non-Uníversal, Flavor-Dependent?

Do Nuclear PDFS Obey Momentum and other Sum Rules? Forward Virtual Compton scattering for a usual DIS event

$$\gamma^* + p \to X \to \gamma^* + p$$

Unitarity: Imaginary part (cut) gives DIS cross-section

Vanishing LF time between currents of virtual photons at large q^2 : OPE!

$$(x-y)^2 \to 0$$

Forward Virtual Compton scattering for a DIS event

Vanishing LF time between currents of virtual photons at large q^2 : OPE!

Reduces at $Q^2 \to \infty$ to a local operator: $T^{\mu\nu}$: the energy momentum tensor; i.e., the coupling of a graviton Forward Vírtual Compton scattering for a DIS event

Vanishing LF time between currents of virtual photons at large q^2 : OPE! Reduces at $Q^2 \to \infty$ to a local operator: $T^{\mu\nu}$: the energy momentum tensor; i.e., the coupling of a graviton T^{++} gives the momentum sum rule

Simplified Description of DDIS from two-gluon Pomeron exchange in the LF framework

Five-quark Fock State + final-state interaction produces rapidity gap

Diffractive DIS Event: $\gamma^* + p_{|uduQ\bar{Q}\rangle} \rightarrow p' + X + (rapgap)$

Low-Nussinov Two-Gluon Model of Pomeron

Diffractive Deep Inelastic Scattering DDIS

QCD Mechanism for Rapidity Gaps

Forward Virtual Compton scattering for a DDIS event

Unitarity: Cut gives DDIS cross section

Nonzero LF propagation time between virtual photons: No OPE!

 $< p|J^{\mu}(x)|N > < N|J^{\nu}(y)|p>, (x-y)^{2} \neq 0$

Complex phases from Pomeron Exchange
DDIS: No OPE and No Momentum Sum Rule!!

DDIS: Diffractive Deep Inelastic Scattering

90% of proton momentum carried off by final state p' in 15% of events!

Gluon momentum fraction may be misidentified!

Violates Momentum and other Sum Rules

DIS on a Nuclear Target
$$\gamma^* \to X$$

Stodolsky
Gribov
Pumplin, sjb

Shadowing depends on understanding leading twist-diffraction in DIS

Diffraction via Pomeron gives destructive interference!

Shadowing

Shadowing depends on understanding leading-twist diffraction in DIS

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_B : $1/Mx_B = 2\nu/Q^2 \ge L_A.$

If the scattering on nucleon N_1 is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \overline{q} flux reaching N_2 .

Interior nucleons shadowed

 \rightarrow Shadowing of the DIS nuclear structure functions.

Observed HERA DDIS produces nuclear shadowing

Study Forward Virtual Compton Scattering on Nucleus

Reduces to matrix element of local operator: Sum Rules

LFWFs are real for stable hadrons, nuclei

Doubly Virtual Nuclear Compton Scattering $\gamma^*(q)A \to \gamma^*(q)A$

Contribution from One-Step / Two-Step Interference

Nonzero LF propagation time between virtual photons: No OPE!

Complex phases from Pomeron Exchange

DDIS: No Momentum Sum Rule

Reggeon Exchange Contribution to Charge-Exchange DDIS

Two-step Glauber process

Reggeon Exchange

Can give constructive interference !

Schmidt, Lu, Yang, sjb

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_B : $1/Mx_B = 2\nu/Q^2 \ge L_A.$

KeggeIf the scattering on nucleon N_1 is via pomeronexchange, the one-step and two-step ampli-tudes are opposite in phase, thus diminishingthe \overline{q} flux reaching N_2 .constructive in phase

thus *increasing* the flux reaching N₂

Interior nucleons anti-shadowed

Regge Exchange in DDIS produces nuclear anti-shadowing

Regge contribution:
$$\sigma_{\bar{q}N} \sim \hat{s}^{\alpha_R-1}$$
 $\alpha_R \simeq 1/2$

Phase of two-step amplitude relative to one step:

$$\frac{1}{\sqrt{2}}(1-i) \times i = \frac{1}{\sqrt{2}}(i+1)$$

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of γ^*, Z^0, W^{\pm}

Test: Tagged Drell-Yan

Anti-Shadowing

nterferei ice!

Is Antishadowing Non-Universal? -- Quark Specific?

ersal

Comparison of the ratio of iron to deuteron nuclear structure functions measured in deep inelastic neutrinonucleus scattering (NuTeV [2], CDHSW [8]), and muonnucleus scattering (BCDMS [9] and NMC [10, 11]). All data are displayed in the online Durham HepData Project Database [12]. Anti-shadowing is absent in the neutrino charged current data.

Nuclear Antishadowing is flavor dependent not universal !

- Unlike shadowing, anti-shadowing from Reggeon exchange is flavor specific;
- Each quark and anti-quark will have distinctly different constructive interference patterns.
- The flavor dependence of antishadowing explains why anti- shadowing is different for electron (neutral electro- magnetic current) vs. neutrino (charged weak current) DIS reactions.
- Test of the explanation of antishadowing: Bjorken-scaling leading-twist charge exchange DDIS reaction $\gamma^*p \rightarrow nX^+$ with a rapidity gap due to I=1 Reggeon exchange
- The finite path length due to the on-shell propagation of V⁰ between N₁ and N₂ contributes a finite distance $(\Delta z)^2$ between the two virtual photons in the DVCS amplitude.

The usual "handbag" diagram where the two J $\mu(x)$ and J $\nu(0)$ currents acting on an uninterrupted quark propagator are replaced by a local operator T $\mu\nu(0)$ as $Q^2 \rightarrow \infty$, is inapplicable in deeply virtual Compton scattering from a nucleus since the currents act on different nucleons.

$$\Delta z^2$$
 does not vanish as $\frac{1}{Q^2}$.

OPE and Sum Rules invalid for nuclear pdfs

One of the most interesting aspects of neutrino-nucleus DIS measurements is the apparent absence of antishadowing of the nuclear parton distributions, in direct contradiction to electron-nucleus and muon-nucleus measurements.

Implications:

- (1) anti-shadowing is flavor specific.
- (2) This can be tested in flavor-tagged semi-inclusive deep inelastic lepton scattering.
- (3) antishadowing cannot compensate for shadowing in the momentum sum rule
- (5) the momentum sum rule is inapplicable for the nuclear pdf,
- (6) the standard operator product analysis fails for nuclei because of shadowing and antishadowing.
- (7) Implications of these issues for nuclear pdfs in QCD based on Glauber-Gribov theory
- (9) Important connections to leading-twist diffractive DIS.

Illustrates the LF time sequence

Front-Face Nucleon N1 struckFront-Face Nucleon N1 not struckOne-Step / Two-Step InterferenceStudy Double Virtual Compton Scattering $\gamma^*A \rightarrow \gamma^*A$ Cannot reduce to matrix element
of local operator! No Sum Rules!Liuti, Schmidt sjb

Color transparency fundamental prediction of QCD

 Not predicted by strongly interacting hadronic picture → arises in picture of quark-gluon interactions

A.H. Mueller, sjb

- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_A, as a function of the momentum transfer, Q²

$$T_A = rac{\sigma_A}{A \sigma_N}$$
 (nuclear cross section)
(free nucleon cross section)

Two-Stage Color Transparency for Proton

Static

- Square of Target LFWFs
- No Wilson Line
- Probability Distributions
- Process-Independent
- T-even Observables
- No Shadowing, Anti-Shadowing
- Sum Rules: Momentum and J^z
- DGLAP Evolution; mod. at large x
- No Diffractive DIS

Dynamic

Modified by Rescattering: ISI & FSI

Contains Wilson Line, Phases

No Probabilistic Interpretation

Process-Dependent - From Collision

T-Odd (Sivers, Boer-Mulders, etc.)

Shadowing, Anti-Shadowing, Saturation

Momentum and Other Sum Rules Invalid

Hwang, Schmidt, Lyubovitskij, Luiti, sjb,

Hard Pomeron and Odderon Diffractive DIS

Qiu, Sterman

Mulders, Boer

Collins, Qiu

Pasquini, Xiao, Yuan, sjb

Final-State Interactions Produce Pseudo T-Odd (Sivers Effect)

Hwang, Schmidt, sjb Collins

- Leading-Twist Bjorken Scaling!
- Requires nonzero orbital angular momentum of quark
- Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves;
- Wilson line effect -- Ic gauge prescription
- Relate to the quark contribution to the target proton magnetic moment and final-state QCD phases
- QCD phase at soft scale!
- New window to QCD coupling and running gluon mass in the IR
- QED S and P Coulomb phases infinite -- difference of phases finite!
- Alternate: Retarded and Advanced Gauge: Augmented LFWFs

Dae Sung Hwang, Yuri V. Kovchegov, Ivan Schmidt, Matthew D. Sievert, sjb

Standard Nuclear Physics: Two color-singlet combinations of three 3_c

$$\sum_{i}^{n} \vec{k}_{\perp i} = \vec{0}_{\perp}$$

Hidden Color in QCD

- Deuteron: Five color-singlet combinations of 6 color-triplet: North America's E
- One Fock state is n p nucleon clusters, one state is $\Delta \Delta$

Rigorous Feature of QCD!

Lepage, Ji, sjb

FLY THE

pQCD Evolution of 5 color-singlet Fock states

FLY THE CANADIAN WAY

Your trip to Canada starts with North America's Best Airline.

 $\Psi_n(x_i,\kappa \mid i,\Lambda_i)$

Lepage, Ji, sjb

 $\Phi_n(x_i, Q) = \int^{k_{\perp i}^2 < Q^2} \Pi' d^2 k_{\perp j} \psi_n(x_i, \vec{k}_{\perp j})$

5 X 5 Matrix Evolution Equation for deuteron distribution amplitude Hidden Color of Deuteron

Deuteron six-quark state has five color-singlet configurations, only one of which is n-p.

Asymptotic Solution has Expansion

$$\psi_{[6]{33}} = (\frac{1}{9})^{1/2} \psi_{NN} + (\frac{4}{45})^{1/2} \psi_{\Delta\Delta} + (\frac{4}{5})^{1/2} \psi_{CC}$$

ERBL Evolution: Transition to Delta-Delta

Lepage, Ji, sjb

Hidden Color in QCD

Lepage, Ji, sjb

- Deuteron: six-quark wavefunction
- ERBL Evolution of deuteron distribution amplitude $\phi_D(x_i, Q^2)$
- 5 color-singlet combinations of 6 color-triplets -- one state is |n p>
- Components of deuteron distribution amplitude evolve towards equality at short distances:

 $\phi_D(x_i, Q^2) \rightarrow C x_1 x_2 x_3 x_4 x_5 x_6$

• Hidden color states dominate deuteron form factor and photo-disintegration at high momentum transfer

$$\frac{d\sigma}{dt}(\gamma d \to \Delta^{++}\Delta^{-}) \simeq \frac{d\sigma}{dt}(\gamma d \to pn) \text{ at high } Q^2$$

QCD Hidden-Color Hexadiquark in the Core of Nuclei

Jennifer Rittenhouse West^{a,b,c}, Stanley J. Brodsky^c, Guy F. de Téramond^d, Alfred S. Goldhaber^e, Iván Schmidt^f

• Nucl.Phys.A 1007 (2021) 122134

$$\begin{aligned} |\alpha\rangle &= C_{pnpn} \left| (u[ud])_{\mathbf{1}_{C}} (d[ud])_{\mathbf{1}_{C}} (u[ud])_{\mathbf{1}_{C}} (d[ud])_{\mathbf{1}_{C}} \right| \\ &+ C_{\mathrm{HdQ}} \left| ([ud][ud])_{\mathbf{\overline{6}}_{C}} ([ud][ud])_{\mathbf{\overline{6}}_{C}} ([ud][ud])_{\mathbf{\overline{6}}_{C}} \right\rangle. \end{aligned}$$

Explain strong nuclear binding of ${}^{4}He$, EMC effect

Abstract

Hidden-color configurations are a key prediction of QCD with important physical consequences. In this work we examine a QCD color-singlet configuration in nuclei formed by combining six scalar [*ud*] diquarks in a strongly bound $SU(3)_C$ channel. The resulting hexadiquark state is a charge-2, spin-0, baryon number-4, isospin-0, color-singlet state. It contributes to alpha clustering in light nuclei and to the additional binding energy not saturated by ordinary nuclear forces in ⁴He as well as the alpha-nuclei sequence of interest for nuclear astrophysics. We show that the strongly bound combination of six scalar isospin-0 [*ud*] diquarks within the nuclear wave function - relative to free nucleons - provides a natural explanation of the EMC effect measured by the CLAS collaboration's comparison of nuclear parton distribution function ratios for a large range of nuclei. These experiments confirmed that the EMC effect; i.e., the distortion of quark distributions within nuclei, is dominantly identified with the dynamics of neutron-proton ("isophobic") short-range correlations within the nuclear wave function rather than proton-proton or neutron-neutron neutron-neutron as a strongly bound combined on the nuclear wave function rather than proton-proton or neutron-neutron neutron-neutron respective.

Color transparency: fundamental prediction of QCD

A.H. Mueller, sjb

- Not predicted by strongly interacting hadronic picture → arises in picture of quark-gluon interactions
- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_A, as a function of the momentum transfer, Q²

$$T_A = rac{\sigma_A}{A \sigma_N}$$
 (nuclear cross section)
(free nucleon cross section)

Two-Stage Color Transparency for Proton

Color Transparency verified for π^+ and ρ electroproduction

X. Qian et al. PRC81:055209 (2010)

CLAS E02-110 rho electro-production

 $A(e,e'\rho^0)$

$$F(q^{2}) = G. \text{ de Terámond, sjb}$$

$$\sum_{n} \prod_{j=1}^{n-1} \int dx_{j} \int d^{2}\mathbf{b}_{\perp j} \exp\left(i\mathbf{q}_{\perp} \cdot \sum_{j=1}^{n-1} x_{j}\mathbf{b}_{\perp j}\right) |\psi_{n}(x_{j}, \mathbf{b}_{\perp j})|^{2}$$

$$\sum_{i} x_{i} = 1$$

$$\vec{a}_{\perp} \equiv \sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j} \qquad \vec{a}_{\perp}^{2} (Q^{2}) = -4 \frac{\frac{d}{dQ^{2}} F(Q^{2})}{F(Q^{2})}$$
Proton radius squared at $Q^{2} = 0$

Color Transparency is controlled by the transverse-spatial size \vec{a}_{\perp}^2 and its dependence on the momentum transfer $Q^2 = -t$: The scale Q_{τ}^2 required for Color Transparency grows with twist τ

Light-Front Holography:

$$\langle \mathbf{a}_{\perp}^2(t) \rangle_{\tau} = \frac{1}{\lambda} \sum_{j=1}^{\tau-1} \frac{1}{j-\alpha(t)}$$

For large Q^2 :

$$\langle \mathbf{a}_{\perp}^2(Q^2) \rangle_{\tau} \to \frac{4(\tau-1)}{Q^2}.$$

$$F(q^{2}) = \frac{\text{Drell-Yan-West Formula in Impact Space}}{\sum_{n} \prod_{i=1}^{n} \int dx_{i} \int \frac{d^{2}\mathbf{k}_{\perp i}}{2(2\pi)^{3}} 16\pi^{3} \,\delta\Big(1 - \sum_{j=1}^{n} x_{j}\Big) \,\delta^{(2)}\Big(\sum_{j=1}^{n} \mathbf{k}_{\perp j}\Big) \\\sum_{j} e_{j} \psi_{n}^{*}(x_{i}, \mathbf{k}_{\perp i}', \lambda_{i}) \psi_{n}(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}),$$

$$= \sum_{n} \prod_{j=1}^{n-1} \int dx_{j} \int d^{2}\mathbf{b}_{\perp j} \exp\Big(i\mathbf{q}_{\perp} \cdot \sum_{i=1}^{n-1} x_{j}\mathbf{b}_{\perp j}\Big) |\psi_{n}(x_{j}, \mathbf{b}_{\perp j})|^{2} \\\sum_{i=1}^{n} x_{i} = 1 \text{ and } \sum_{i=1}^{n} \mathbf{b}_{\perp i} = 0.$$

$$F(q^{2}) = \int_{0}^{1} dx \int d^{2}\mathbf{a}_{\perp} e^{i\mathbf{a}_{\perp} \cdot \mathbf{q}_{\perp}} q(x, \mathbf{a}_{\perp}),$$
where $\mathbf{a}_{\perp} = \sum_{i=1}^{n-1} x_{i}\mathbf{b}_{\perp i}$ is the x-weighted transverse

where $\mathbf{a}_{\perp} = \sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j}$ is the *x*-weighted transverse position coordinate of the n-1 spectators.

$$\langle \mathbf{a}_{\perp}^2(t) \rangle_{\tau} = \frac{1}{\lambda} \sum_{j=1}^{\tau-1} \frac{1}{j-\alpha(t)},$$

Transverse size depends on internal dynamics

Transparency controlled by transverse size

Universality of Generalized Parton Distributions in Light-Front Holographic QCD

Guy F. de Te´ramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Alexandre Deur, SJB (HLFHS Collaboration)

$$F_{\tau}(t) = \frac{1}{N_{\tau}} B\left(\tau - 1, \frac{1}{2} - \frac{t}{4\lambda}\right), \qquad N_{\tau} = B(\tau - 1, 1 - \alpha(0))$$

$$B(u, v) = \int_0^1 dy y^{u-1} (1-y)^{v-1} = \left[\Gamma(u) \Gamma(v) / \Gamma(u+v) \right]$$

$$F_{\tau}(Q^2) = \frac{1}{\left(1 + \frac{Q^2}{M_0^2}\right)\left(1 + \frac{Q^2}{M_1^2}\right)\cdots\left(1 + \frac{Q^2}{M_{\tau-2}^2}\right)} \qquad F_{\tau}(Q^2) \sim \left(\frac{1}{Q^2}\right)^{\tau-1}$$

$$M_n^2 = 4\lambda(n+\frac{1}{2}), n = 0, 1, 2, ..., \tau - 2,$$
 $M_0 = m_\rho$

$$\sqrt{\lambda} = \kappa = \frac{m_{\rho}}{\sqrt{2}} = 0.548 \ GeV$$
 $\frac{1}{2} - \frac{t}{4\lambda} = 1 - \alpha_R(t)$
 $\alpha_R(t) = \rho \text{ Regge Trajectory}$

$$<\tilde{\mathbf{a}}_{\perp}^{2}(x)>=\frac{\int d^{2}\mathbf{a}_{\perp}\mathbf{a}_{\perp}^{2}q(x,\mathbf{a}_{\perp})}{\int d^{2}\mathbf{a}_{\perp}q(x,\mathbf{a}_{\perp})}$$

At large light-front momentum fraction x, and equivalently at large values of Q^2 , the transverse size of a hadron behaves as a point-like color-singlet object. This behavior is the origin of color transparency in nuclei.

Although the dependence of the transverse impact area as a function of x is universal, the behavior in Q^2 depends on properties of the hadron, such as its twist.

$$\langle \mathbf{a}_{\perp}^2(Q^2) \rangle_{\tau} \to \frac{4(\tau-1)}{Q^2}.$$

Mean transverse size as a function of Q and Twist Transparency scale Q increases with twist

Light-Front Holography

Two-Stage Color Transparency

Proton has equal probability for $\tau = 3$ and $\tau = 4$

Two-Stage Color Transparency

$$14 \ GeV^2 < Q^2 < 20 \ GeV^2$$

If Q^2 is in the intermediate range, then the twist-3 state will propagate through the nuclear medium with minimal absorption, and the protons which survive nuclear absorption will only have L = 0 (twist-3).

The twist-4 L = 1 state which has a larger transverse size will be absorbed.

Thus 50% of the events in this range of Q² will have full color transparency and 50% of the events will have zero color transparency (T = 0).

The ep \rightarrow e'p' cross section will have the same angular and Q² dependence as scattering of the electron on an unphysical proton which has no Pauli form factor.

$$Q^2 > 20 \ GeV^2$$

However, if the momentum transfer is increased to $Q^2 > 20 \text{ GeV}^2$, all events will have full color transparency, and the ep $\rightarrow e'p'$ cross section will have the same angular and Q^2 dependence as scattering of the electron on a physical proton eigenstate, with both Dirac and Pauli form factor components.

Color transparency fundamental prediction of QCD

 Not predicted by strongly interacting hadronic picture → arises in picture of quark-gluon interactions

A.H. Mueller, sjb

- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_A, as a function of the momentum transfer, Q²

$$T_A = rac{\sigma_A}{A \sigma_N}$$
 (nuclear cross section)
(free nucleon cross section)

Two-Stage Color Transparency for Proton

$$< a_{\perp}^2(Q^2 = 4~GeV^2) >_{\tau=2} \simeq < a_{\perp}^2(Q^2 = 14~GeV^2) >_{\tau=3} \simeq < a_{\perp}^2(Q^2 = 22~GeV^2) >_{\tau=4} \simeq 0.24~fm^2$$

5% increase for T_{π} in ¹²C at $Q^2 = 4 \ GeV^2$ implies 5% increase for T_p at $Q^2 = 18 \ GeV^2$

Color Transparency and Light-Front Holography

- Essential prediction of QCD
- LF Holography: Spectroscopy, dynamics, structure
- Transverse size predicted by LF Holography as a function of Q
- Q scale for CT increases with twist, number of constituents
- Two-Stage Proton Transparency: Equal probability L=0,1
- No contradiction with present experiments

 $Q_0^2(p) \simeq 18 \ GeV^2$ vs. $Q_0^2(\pi) \simeq 4 \ GeV^2$ for onset of color transparency in ${}^{12}C$

Novel Effects Derived from Light-Front Wavefunctions

- Color Transparency
- Intrinsic heavy quarks at high x c(x), b(x)
- Asymmetries $s(x) \neq \bar{s}(x), \ \bar{u}(x) \neq \bar{d}(x)$
- Spin correlations, counting rules at x to 1
- Diffractive deep inelastic scattering $ep \rightarrow epX$
- Nuclear Effects: Hidden Color

- Color Confinement
- Origin of the QCD Mass Scale
- Meson and Baryon Spectroscopy
- Exotic States: Tetraquarks, Pentaquarks, Gluonium,
- Universal Regge Slopes: n, L, Mesons and Baryons
- Almost Massless Pion: GMOR Chiral Symmetry Breaking $M_{\pi}^{2}f_{\pi}^{2} = -\frac{1}{2}(m_{u}+m_{d})\langle \bar{u}u+\bar{d}d\rangle + O((m_{u}+m_{d})^{2})$
- QCD Coupling at all Scales $\alpha_s(Q^2)$
- Eliminate Scale Uncertainties and Scheme Dependence

$$\begin{array}{c} \text{Light-Front QCD} \\ \mathcal{L}_{QCD} \longrightarrow H_{QCD}^{LF} \\ (H_{LF}^{0} + H_{LF}^{I}) |\Psi > = M^{2} |\Psi > \\ (H_{LF}^{0} + H_{LF}^{I}) |\Psi > = M^{2} |\Psi > \\ [\frac{\vec{k}_{\perp}^{2} + m^{2}}{x(1-x)} + V_{\text{eff}}^{LF}] \psi_{LF}(x, \vec{k}_{\perp}) = M^{2} \psi_{LF}(x, \vec{k}_{\perp}) \\ \hline \left[-\frac{d^{2}}{d\zeta^{2}} - \frac{1-4L^{2}}{4\zeta^{2}} + U(\zeta) \right] \psi(\zeta) = \mathcal{M}^{2} \psi(\zeta) \\ \hline \text{AdS/QCD:} \\ \hline U(\zeta) = \kappa^{4} \zeta^{2} + 2\kappa^{2} (L+S-1) \end{array}$$

Semiclassical first approximation to QCD

Fixed $\tau = t + z/c$

$$\zeta^{2} = x(1-x)b_{\perp}^{2}$$

Coupled Fock states

Elímínate hígher Fock states and retarded interactions

Effective two-particle equation

Azímuthal Basís
$$\zeta, \phi$$

Single variable Equation $m_q = 0$

Confining AdS/QCD potential!

Sums an infinite # diagrams

Maldacena

Dílaton-Modífied Ads

$$ds^{2} = e^{\varphi(z)} \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} x^{\mu} x^{\nu} - dz^{2})$$

- Soft-wall dilaton profile breaks conformal invariance $e^{\varphi(z)} = e^{+\kappa^2 z^2}$
- Color Confinement in z
- Introduces confinement scale K
- Uses AdS₅ as template for conformal
 theory

and identical equations of motion

de Tèramond, Dosch, sjb

AdS/QCD Soft-Wall Model

 $e^{\varphi(z)} = e^{+\kappa^2 z^2}$

$$\left[-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta)\right]\psi(\zeta) = M^2\psi(\zeta)$$

Light-Front Schrödinger Equation

$$U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$$

Single variable (

Unique Confinement Potential!

Conformal Symmetry of the action

Confinement scale: $\kappa \simeq 0.5 \ GeV$

de Alfaro, Fubini, Furlan:Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

GeV units external to QCD: Only Ratios of Masses Determined

Prediction from AdS/QCD: Meson LFWF

Spacelike Pion Form Factor

week ending 24 AUGUST 2012

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

LFHQCD: Underlying Principles

- Poincarè Invariance: Independent of the observer's Lorentz frame: Quantization at Fixed Light-Front Time T
- Causality: Information within causal horizon: Light-Front
- Light-Front Holography: AdS₅ = LF (3+1)

 $z \leftrightarrow \zeta$ where $\zeta^2 = b_\perp^2 x (1-x)$

- Introduce Mass Scale κ while retaining the Conformal Invariance of the Action (dAFF)
- Unique Dilaton in AdS₅: $e^{+\kappa^2 z^2}$
- Unique color-confining LF Potential $U(\zeta^2) = \kappa^4 \zeta^2$
- ^{ty Of Kentucky Logo Png, Transpa} Superconformal Algebra: Mass Degenerate 4-Plet:

 $\operatorname{Meson} q\bar{q} \leftrightarrow \operatorname{Baryon} q[qq] \leftrightarrow \operatorname{Tetraquark} [qq][\bar{q}\bar{q}]$

Superconformal Algebra

de Téramond, Dosch, sjb

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass!

Baryon Spectroscopy from LF Holography

$$\begin{pmatrix} -\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + \lambda^2\zeta^2 + 2\lambda(L+1) \end{pmatrix} \psi_+ = M^2 \psi_+ \\ \begin{pmatrix} -\frac{d^2}{d\zeta^2} - \frac{1 - 4(L+1)^2}{4\zeta^2} + \lambda^2\zeta^2 + 2\lambda L \end{pmatrix} \psi_- = M^2 \psi_- \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \text{Eigenvalues} \\ M^2 = 4\lambda(n+L+1) \\ \text{Eigenfunctions} \\ \psi_+(\zeta) \sim \zeta^{\frac{1}{2} + L} e^{-\lambda\zeta^2/2} L_n^L(\lambda\zeta^2), \quad \psi_-(\zeta) \sim \zeta^{\frac{3}{2} + L} e^{-\lambda\zeta^2/2} L_n^{L+1}(\lambda\zeta^2) \\ \end{pmatrix}$$

Same slope in n and L!

quark-diquark structure of baryons

Rittenhouse West: Consequences for nuclear physics

Universal Hadronic Decomposition

$$\frac{\mathcal{M}_{H}^{2}}{\kappa^{2}} = (1 + 2n + L) + (1 + 2n + L) + (2L + 4S + 2B - 2)$$
• Universal quark light-front kinetic energy
Equal:
Virial
Virial
Heorem
• Universal quark light-front potential energy
$$\Delta \mathcal{M}_{LFPE}^{2} = \kappa^{2}(1 + 2n + L)$$
• Universal quark light-front potential energy
$$\Delta \mathcal{M}_{LFPE}^{2} = \kappa^{2}(1 + 2n + L)$$
• Universal Constant Contribution from AdS
and Superconformal Quantum Mechanics
$$\Delta \mathcal{M}_{spin}^{2} = 2\kappa^{2}(L + 2S + B - 1)$$

hyperfine spin-spin

QCD Myths

- Anti-Shadowing is Universal: Nuclear PDF Sum Rules!
- ISI and FSI are higher twist effects and universal
- High transverse momentum hadrons arise only from jet fragmentation -- baryon anomaly!
- heavy quarks only from gluon splitting
- renormalization scale cannot be fixed
- QCD condensates are vacuum effects
- Infrared Slavery
- Nuclei are composites of nucleons only
- Real part of DVCS arbitrary

APS-GHP Denver Wednesday, 10 April 2019

Novel QCD Effects in Hadrons and Nuclei

Fe/D

0.01

x

Diffractive Contribution to Deep Inelastic Scattering: Implications for QCD Sum Rules and Nuclear Parton Distributions

Anti-Shadowing

