Diffractive Contribution to Deep Inelastic Scattering: Implications for QCD Sum Rules and Nuclear Parton Distributions

The Diffractive Contribution to Deep Inelastic Lepton-Proton Scattering: Implications for QCD Momentum Sum Rules and Parton Distributions

Stanley J. Brodsky, ${ }^{1}$ Valery E. Lyubovitskij, ${ }^{2,3}$ and Ivan Schmidt ${ }^{3}$
${ }^{1}$ SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
${ }^{2}$ Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
${ }^{3}$ Departamento de Física y Centro Científico Tecnológico de Valparaíso-CCTVal, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

Is the Momentum Sum Rule Valid for Nuclear Structure Functions ?

Stanley J. Brodsky
SLAC National Accelerator Laboratory, Stanford University
Ivan Schmidt
Departamento de Física y Centro Científico Tecnológico de Valparaíso-CCTVal Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
Simonetta Liuti*
Department of Physics, University of Virginia, Charlottesville, VA 22904, USA.
(Dated: August 20, 2019)

Remarkable observation at HERA ratio: DDIS/DIS

10% to 15% of DIS
eventsare diffractive!

Fraction r of events with a large rapidity gap, $\eta_{\max }<1.5$, as a function of Q_{DA}^{2} for two ranges of x_{DA}. No acceptance corrections have been applied.
M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993)

DDIS is leading twist , Bjorken scaling

Diffractive Structure Function $F_{2} D$

Diffractive inclusive cross section

$$
\frac{\mathrm{d}^{3} \sigma_{N C}^{\text {diff }}}{\mathrm{d} x_{\mathbb{P}} \mathrm{d} \beta \mathrm{~d} Q^{2}} \propto \frac{2 \pi \alpha^{2}}{x Q^{4}} F_{2}^{D(3)}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)
$$

$$
F_{2}^{D}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)=f\left(x_{\mathbb{P}}\right) \cdot F_{2}^{\mathbb{P}}\left(\beta, Q^{2}\right)
$$

extract DPDF and $x g(x)$ from scaling violation
Large kinematic domain $3<Q^{2}<1600 \mathrm{GeV}^{2}$
Precise measurements sys 5%, stat $5-20 \%$
Bjorken Scaling, Leading Twist
DIS $\sim 10 \%$ of DIS rate
${ }^{10^{3}} \mathbf{Q}^{2}\left[\mathrm{GeV}^{2}\right]$

Nuclear Shadowing and Anti-Shadowing
Can the Momentum Sum Rule be applied?

$$
\begin{aligned}
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& \qquad \psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right) \\
& P^{+}, \vec{P}_{\perp} \\
& \text { Dirac: Front Form }
\end{aligned}
$$

Measurements of hadron LF

 wavefunction are at fixed $\mathbf{L F}$ time Fixed $\tau=t+z / c$Like a flash photograph

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Invariant under boosts! Independent of P^{μ}

Light-Front QCD
 Physical gauge: $A^{+}=0$

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{gathered}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t}
\end{gathered}
$$

$$
H_{L F}^{i n t}: \text { Matrix in Fock Space }
$$

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
$$

$$
\left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

Eigenvalues and Eigensolutions give Hadronic Spectrum and Light-Front wavefunctions

$H_{L F}^{i n t}$

$$
\begin{gathered}
\left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}> \\
x_{i}=\frac{k_{P}^{+}}{P+}, \sum_{i} k_{i}^{+}=P^{+} \\
\sum_{i=1}^{n} x_{i}=1, \sum_{i=1}^{n} \vec{k}_{\perp i}=0
\end{gathered}
$$

Light-Front Wavefunctions $\psi\left(x_{i}, k_{\perp i}, \lambda_{i}\right)$ obey charge and momentum sum rules

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fractions

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\begin{gathered}
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp} . \\
\begin{array}{c}
\text { Intrinsicheavy quarks } \\
\boldsymbol{s}(\boldsymbol{x}), \boldsymbol{c}(\boldsymbol{x}), \boldsymbol{b}(\boldsymbol{x}) \text { at high } \boldsymbol{x}! \\
\bar{s}(x) \neq s(x) \\
\bar{u}(x) \neq \bar{d}(x)
\end{array}
\end{gathered}
$$

\qquad

$$
\begin{gathered}
\text { Deep Inelastic Electron-Proton Scattering } \\
F_{2}\left(x_{b j}, Q^{2}\right)=\sum_{n \geq 3}^{2 p \cdot q} \int_{0}^{1} d x_{i} \int d^{2} k_{\perp_{i}}\left|\psi_{n}\left(x_{i}, \vec{k}_{\perp i}\right)\right|^{2} \delta\left(x_{s t r u c k}-x_{b j}\right) \\
\left|p, J_{z}>=\sum_{n=3}^{n} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}> \\
\text { Includes Gluonic } \\
\text { Bremsstrahlung }
\end{gathered}
$$

$$
<p+q\left|j^{+}(0)\right| p>=2 p^{+} F\left(q^{2}\right)
$$

Drell \&Yan, West Exact LF formula!
spectators $\quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp}$
Drell, sjb

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\perp}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\perp *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \\
& \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp} \\
& \text { Drell, sjb } \\
& q_{R, L}=q^{x} \pm i q^{y}
\end{aligned}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$
Nonzero Proton Anomalous Moment -->
Nonzero orbital quark angular momentum

Dae Sung Hwang, Bo-Qiang Ma, Ivan Schmidt, sjb

Terayev, Okun: $\mathcal{B}(0)$ Must vanish because of Equivalence Theorem

Vanishing Anomalous gravitomagnetic moment $B(0)$

Advantages of the Dirac's Front Form for Hadron Physics

 Poincare' Invariant
Physics Independent of Observer's Motion

- Measurements are made at fixed τ
- Causality is automatic
- Structure Functions are squares of LFWFs
- Form Factors are overlap of LFWFs
- LFWFs are frame-independent: no boosts, no pancakes!

Penrose, Terrell, Weisskopf

- Same structure function measured at an ep collider and the proton rest frame
- No dependence of hadron structure on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial up to zero modes
- Implications for Cosmological Constant

QCD Mechanism for DDIS and Rapídity Gaps

Reproduces lab-frame color dipole approach DDIS: Input for leading twist nuclear shadowing

DDIS: Diffractive Deep Inelastic Scattering

Theory of Nuclear Shadowing in DIS

One Step

Two Step

Shadowing depends on understanding leading twist-diffraction in DIS

Diffraction via Pomeron gives destructive interference!

Shadowing

Shadowing depends on understanding leading-twist diffraction in DIS

Comparison of the ratio of iron to deuteron nuclear structure functions measured in deep inelastic neutrinonucleus scattering (NuTeV [2], CDHSW [8]), and muonnucleus scattering (BCDMS [9] and NMC [10, 11]). All data are displayed in the online Durham HepData Project Database [12]. Anti-shadowing is absent in the neutrino charged current data.

Does Diffractive DIS
 Obey Momentum and other Sum Rules?

Is Antishadowing in DIS
Non-Universat, Flavor-Dependent?

Do Nuclear PDFS
Obey Momentum and other Sum Rules?

$$
\gamma^{*}+p \rightarrow X \rightarrow \gamma^{*}+p
$$

Unitarity: Imaginary part (cut) gives DIS cross-section

Vanishing LF time between currents of virtual photons at large q^{2} : OPE!

$$
(x-y)^{2} \rightarrow 0
$$

Vanishing LF time between currents of virtual photons at large q^{2} : OPE!
Reduces at $Q^{2} \rightarrow \infty$ to a local operator: $T^{\mu \nu}:$ the energy momentum tensor; i.e., the coupling of a graviton

Forward Virtual Compton scattering for a DIS event

$$
\gamma^{*}+p \rightarrow X \rightarrow \gamma^{*}+p
$$

T^{++}gives the momentum sum rule

Vanishing LF time between currents of virtual photons at large q^{2} : OPE!
Reduces at $Q^{2} \rightarrow \infty$ to a local operator: $T^{\mu \nu}$: the energy momentum tensor; i.e., the coupling of a graviton

$$
T^{++} \text {gives the momentum sum rule }
$$

Simplified Description of DDIS from two-gluon Pomeron exchange in the LF framework

Five-quark Fock State + final-state interaction produces rapidity gap

Diffractive DIS Event: $\gamma^{*}+p_{\mid u d u Q \bar{Q}>} \rightarrow p^{\prime}+X+($ rapgap $)$

Five-quark Fock state of proton: $\mid\{u d u\}_{8 C}\{Q \bar{Q}\}_{8 C}>$

Diffractive Deep Inelastic Scattering DDIS

QCD Mechanism for Rapidity Gaps

Reproduces lab-frame color dipole approach DDIS: Input for leading twist nuclear shadowing

Forward Virtual Compton scattering for a DDIS event

Unitarity: Cut gives DDIS cross section

$$
\gamma^{*}+p \rightarrow\left\{Q^{\prime} \bar{Q}^{\prime}\right\}+p^{\prime} \rightarrow \gamma^{*}+p
$$

Nonzero LF propagation time between virtual photons: No OPE!

$$
<p\left|J^{\mu}(x)\right| N><N\left|J^{\nu}(y)\right| p>,(x-y)^{2} \neq 0
$$

Complex phases from Pomeron Exchange DDIS: No OPE and No Momentum Sum Rule!!

DDIS:
Diffractive
Deep Inelastic Scattering

90\% of proton momentum carried off by final state p' in 15% of events!

Gluon momentum fraction may be misidentified!
Violates Momentum and other Sum Rules

Theory of Nuclear Shadowing in DIS

Pumplin, sjb

One Step

Two Step

Shadowing depends on understanding leading twist-diffraction in DIS

Diffraction via Pomeron gives destructive interference!

Shadowing

Shadowing depends on understanding leading-twist diffraction in DIS

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

If the scattering on nucleon N_{1} is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \bar{q} flux reaching N_{2}.

Interior nucleons shadowed
\rightarrow Shadowing of the DIS nuclear structure functions.

Study Forward Virtual Compton Scattering on Nucleus

$$
q^{+}=0 \quad q_{\perp}^{2}=Q^{2}=-q^{2}
$$

Unitarity: Cut gives DIS Cross Section

Usual "Handbag" Diagram: no DDIS
Double Virtual Compton Scattering $\gamma^{*} A \rightarrow \gamma^{*} A$

Reduces to matrix element of local operator: Sum Rules
LFWFs are real for stable hadrons, nuclei

Doubly Virtual Nuclear Compton Scattering $\gamma^{*}(q) A \rightarrow \gamma^{*}(q) A$

Contribution from One-Step / Two-Step Interference

Nonzero LF propagation time between virtual photons: No OPE!
Complex phases from Pomeron Exchange DDIS: No Momentum Sum Rule

Reggeon Exchange Contribution to Charge-Exchange DDIS

Regge contribution: $\sigma_{\bar{q} N} \sim \widehat{s}^{\alpha_{R}-1} \quad \alpha_{R} \simeq 1 / 2$

Non-singlet Reggeon Exchange

Two-step Glauber process

Reggeon Exchange

Can give constructive interference!

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

Regge
If the scattering on nucleon N_{1} is via exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \bar{q} flum reaching N_{2}.
constructive in phase thus increasing the flux reaching N_{2}

Interior nucleons anti-shadowed

Regge Exchange in DDIS produces nuclear antu-shadowing

Reggeon Exchange

Regge contribution: $\sigma_{\bar{q} N} \sim \widehat{s}^{\alpha_{R}-1} \quad \alpha_{R} \simeq 1 / 2$
Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$
Test: Tagged Drell-Yan

Anti-Shadowing

$$
Q^{2}=5 \mathrm{GeV}^{2}
$$

Is Antishadowing Non-Universal? -- Quark Specific?

Is Antishadowing Non-Universal? -- Quark Specific?
Comparison of the ratio of iron to deuteron nuclear structure functions measured in deep inelastic neutrinonucleus scattering (NuTeV [2], CDHSW [8]), and muonnucleus scattering (BCDMS [9] and NMC [10, 11]). All data are displayed in the online Durham HepData Project Database [12]. Anti-shadowing is absent in the neutrino charged current data.

Modifies
NuTeV extraction of $\sin ^{2} \theta_{W}$

Test in flavor-tagged DIS at the EIC

Nuclear Antishadowing is flavor dependent

 not universal!- Unlike shadowing, anti-shadowing from Reggeon exchange is flavor specific;
- Each quark and anti-quark will have distinctly different constructive interference patterns
- The flavor dependence of antishadowing explains why anti- shadowing is different for electron (neutral electro- magnetic current) vs. neutrino (charged weak current) DIS reactions.
- Test of the explanation of antishadowing: Bjorken-scaling leading-twist charge exchange DDIS reaction $\gamma^{*} \mathrm{p} \rightarrow \mathrm{nX}{ }^{+}$with a rapidity gap due to $\mathrm{I}=1$ Reggeon exchan
- The finite path length due to the on-shell propagation of V 0 between N 1 and N 2 contributes a finite distance $(\Delta z)^{2}$ between the two virtual photons in the DVCS amplitude.

The usual "handbag" diagram where the two $\mathrm{J} \mu(\mathrm{x})$ and $\mathrm{J}^{\nu}(0)$ currents acting on an uninterrupted quark propagator are replaced by a local operator $\mathrm{T} \mu \nu(0)$ as $\mathrm{Q}^{2} \rightarrow \infty$, is inapplicable in deeply virtual Compton scattering from a nucleus since the currents act on different nucleons.
Δz^{2} does not vanish as $\frac{1}{Q^{2}}$.

OPE and Sum Rules invalid for nuclear pdfs

One of the most interesting aspects of neutrino-nucleus DIS measurements is the apparent absence of antishadowing of the nuclear parton distributions, in direct contradiction to electron-nucleus and muon-nucleus measurements.

Implications:
(1) anti-shadowing is flavor specific.
(2) This can be tested in flavor-tagged semi-inclusive deep inelastic lepton scattering.
(3) antishadowing cannot compensate for shadowing in the momentum sum rule
(5) the momentum sum rule is inapplicable for the nuclear pdf,
(6) the standard operator product analysis fails for nuclei because of shadowing and antishadowing.
(7) Implications of these issues for nuclear pdfs in QCD based on Glauber-Gribov theory
(9) Important connections to leading-twist diffractive DIS.
$q^{+}=0 \quad q_{\perp}^{2}=Q^{2}=-q^{2}$
Illustrates the
LF time sequence

Front-Face Nucleon N_{1} struck
Front-Face Nucleon N_{1} not struck One-Step / Two-Step Interference
Study Double Virtual Compton Scattering $\gamma^{*} A \rightarrow \gamma^{*} A$
Cannot reduce to matrix element of local operator! No Sum Rules!

Liuti, Schmidt sjb

Color transparency fundamental prediction of QCD

- Not predicted by strongly interacting hadronic picture \rightarrow arises in picture of quark-gluon interactions
- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_{A}, as a function of the momentum transfer, Q^{2}

Two-Stage Color Transparency for Proton

Dynamic

- Square of Target LFWFs
- No Wilson Line
- Probability Distributions
- Process-Independent
- T-even Observables
- No Shadowing, Anti-Shadowing
- Sum Rules: Momentum and J
- DGLAP Evolution; mod. at large x
- No Diffractive DIS

Modified by Rescattering: ISI \& FSI
Contains Wilson Line, Phases
Mulders, Boer
No Probabilistic Interpretation
Qiu, Sterman
Process-Dependent - From Collision
T-Odd (Sivers, Boer-Mulders, etc.)
Shadowing, Anti-Shadowing, Saturation

Momentum and Other Sum Rules Invalid

Hwang, Schmidt, Lyubovitskij, Luiti, sjb,

Leading Twist Sivers Effect

Hwang, Schmidt, sjb

"Lensing Effect"

Leading-Twist Rescattering Violates PQCD Factorization!

Final-State Interactions Produce Pseudo T-Odd (Sívers Effect)

Hwang, Schmidt, sjb
Collins

- Leading-Twist Bjorken Scaling!
- Requires nonzero orbital angular momentum of quark
- Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves;
- Wilson line effect -- Ic gauge prescription
- Relate to the quark contribution to the target proton magnetic moment and final-state QCD phases
- QCD phase at soft scale!
- New window to QCD coupling and running gluon mass in the IR
- QED S and P Coulomb phases infinite -- difference of phases finite!
- Alternate: Retarded and Advanced Gauge: Augmented LFWFs

Dae Sung Hwang, Yuri V. Kovchegov,
Ivan Schmidt, Matthew D. Sievert, sjb
Pasquini, Xiao, Yuan, sjb
Mulders, Boer
Qiu, Sterman

Fixed $\tau=t+z / c$

$$
P^{+}=P^{0}+P^{z}
$$

$$
\psi_{d}\left(x_{i}, \vec{k}_{\perp i}\right)=\psi_{d}^{b o d y} \times \psi_{n} \times \psi_{p}
$$

$$
\sum_{i}^{n} x_{i}=1
$$

Standard Nuclear Physics:
Two color-singlet combinations of three 3c

Hidden Color in QCD

- Deuteron: Five color-singlet combinations of 6 color-triplets
- One Fock state is n p nucleon clusters, one state is $\Delta \Delta$

Hidden Color 6-Quark Fock State

Rigorous Feature of QCD!

pQCD Evolution of 5 color-singlet Fock states

$$
\Psi_{n}^{\mathbf{d}}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

Lepage, Ji, sjb

$$
\begin{aligned}
\sum_{i}^{n} \vec{k}_{\perp i} & =\overrightarrow{0}_{\perp} \\
\sum_{i}^{n} x_{i} & =1
\end{aligned}
$$

$$
\Phi_{n}\left(x_{i}, Q\right)=\int^{k_{\perp i}^{2}<Q^{2}} \Pi^{\prime} d^{2} k_{\perp j} \psi_{n}\left(x_{i}, \vec{k}_{\perp j}\right)
$$

5×5 Matrix Evolution Equation for deuteron distribution amplitude

Hidden Color of Deuteron

Deuteron six-quark state has five color-singlet configurations, only one of which is $\mathbf{n - p}$.

Asymptotic Solution has Expansion

$$
\psi_{[6]\{33\}}=\left(\frac{1}{9}\right)^{1 / 2} \psi_{N N}+\left(\frac{4}{45}\right)^{1 / 2} \psi_{\Delta \Delta}+\left(\frac{4}{5}\right)^{1 / 2} \psi_{C C}
$$

ERBL Evolution: Transition to Delta-Delta

Lepage, Ji, sjb

Hidden Color in QCD

Lepage, Ji, sjb

- Deuteron: six-quark wavefunction
- ERBL Evolution of deuteron distribution amplitude $\phi_{D}\left(x_{i}, Q^{2}\right)$
- 5 color-singlet combinations of 6 color-triplets -- one state is $\ln \mathrm{p}>$
- Components of deuteron distribution amplitude evolve towards equality at short distances:

$$
\phi_{D}\left(x_{i}, Q^{2}\right) \rightarrow C x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}
$$

- Hidden color states dominate deuteron form factor and photo-disintegration at high momentum transfer

$$
\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{-}\right) \simeq \frac{d \sigma}{d t}(\gamma d \rightarrow p n) \text { at high } Q^{2}
$$

QCD Hidden-Color Hexadiquark in the Core of Nuclei

Jennifer Rittenhouse West ${ }^{\text {a,b,c }}$, Stanley J. Brodsky ${ }^{\text {c }}$, Guy F. de Téramond ${ }^{\text {d }}$, Alfred S. Goldhaber ${ }^{\mathrm{e}}$, Iván Schmidt ${ }^{\mathrm{f}}$

- Nucl.Phys.A 1007 (2021) 122134

$$
\begin{aligned}
& |\alpha\rangle=C_{p n p n}\left|(u[u d])_{\mathbf{1}_{C}}(d[u d])_{\mathbf{1}_{C}}(u[u d])_{\mathbf{1}_{C}}(d[u d])_{\mathbf{1}_{c}}\right\rangle \\
& +C_{\text {HdQ }}\left|([u d][u d])_{\overline{\mathbf{\sigma}}_{c}}([u d][u d])_{\overline{\mathbf{\sigma}}_{c}}([u d][u d])_{\overline{\mathbf{\sigma}}_{c}}\right\rangle .
\end{aligned}
$$

Explain strong nuclear binding of ${ }^{4} \mathrm{He}$, EMC effect

Abstract

Hidden-color configurations are a key prediction of QCD with important physical consequences. In this work we examine a QCD color-singlet configuration in nuclei formed by combining six scalar [ud] diquarks in a strongly bound $\mathrm{SU}(3)_{\mathrm{C}}$ channel. The resulting hexadiquark state is a charge-2, spin- 0 , baryon number-4, isospin- 0 , color-singlet state. It contributes to alpha clustering in light nuclei and to the additional binding energy not saturated by ordinary nuclear forces in ${ }^{4} \mathrm{He}$ as well as the alpha-nuclei sequence of interest for nuclear astrophysics. We show that the strongly bound combination of six scalar isospin-0 [ud] diquarks within the nuclear wave function - relative to free nucleons - provides a natural explanation of the EMC effect measured by the CLAS collaboration's comparison of nuclear parton distribution function ratios for a large range of nuclei. These experiments confirmed that the EMC effect; i.e., the distortion of quark distributions within nuclei, is dominantly identified with the dynamics of neutron-proton ("isophobic") short-range correlations within the nuclear wave function rather than proton-proton or neutron-neutron

Color transparency:fundamental prediction of QCD

- Not predicted by strongly interacting
 hadronic picture \rightarrow arises in picture of quark-gluon interactions
- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_{A}, as a function of the momentum transfer, Q^{2}

$$
\left.T_{A}=\frac{\sigma_{A}}{A \sigma_{N}} \begin{array}{l}
\text { (nuclear cross section) } \\
\text { (free nucleon } \\
\text { cross section) }
\end{array}\right)
$$

Color Transparency verified for π^{+}and ρ electroproduction

CLAS E02-110 rho electro-production A(e, e' ρ^{0})

L. El Fassi et al. PLB 712,326 (2012)

$$
\begin{gathered}
F\left(q^{2}\right)= \\
\sum_{n} \prod_{j=1}^{n-1} \int d x_{j} \int d^{2} \mathbf{b}_{\perp j} \exp \left(i \mathbf{q}_{\perp} \cdot \sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right)\left|\psi_{n}\left(x_{j}, \mathbf{b}_{\perp j}\right)\right|^{2} \\
\sum_{i} x_{i}=1
\end{gathered}
$$

Color Transparency is controlled by the transverse-spatial size \vec{a}_{\perp}^{2} and its dependence on the momentum transfer $Q^{2}=-t$:
The scale Q_{τ}^{2} required for Color Transparency grows with twist τ

Light-Front Holography:
$\left\langle\mathbf{a}_{\perp}^{2}(t)\right\rangle_{\tau}=\frac{1}{\lambda} \sum_{j=1}^{\tau-1} \frac{1}{j-\alpha(t)}$

For large Q2 :

$$
\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle_{\tau} \rightarrow \frac{4(\tau-1)}{Q^{2}}
$$

$$
\begin{gathered}
F\left(q^{2}\right)={ }_{n}^{n} \sum_{n} \prod_{i=1}^{\text {Drell-Yan-West Formula in Impact Space }} \\
\sum_{j} \int e_{j} \psi_{n}^{*}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{n}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right) \\
2(2 \pi)^{3} \\
\sum_{j i}^{n} \\
=\sum_{n} \prod_{i=1}^{n-1} \delta\left(1-\sum_{j=1}^{n} x_{j}\right) \delta^{(2)}\left(\sum_{\perp j} \mathbf{k}_{\perp} \int d^{2} \mathbf{b}_{\perp j} \exp \left(i \mathbf{q}_{\perp} \cdot \sum_{i=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right)\left|\psi_{n}\left(x_{j}, \mathbf{b}_{\perp j}\right)\right|^{2}\right. \\
\sum_{i=1}^{n} x_{i}=1 \text { and } \sum_{i=1}^{n} \mathbf{b}_{\perp i}=0 \\
F\left(q^{2}\right)=\int_{0}^{1} d x \int d^{2} \mathbf{a}_{\perp} e^{i \mathbf{a}_{\perp} \cdot \mathbf{q}_{\perp}} q\left(x, \mathbf{a}_{\perp}\right)
\end{gathered}
$$

where $\mathbf{a}_{\perp}=\sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}$ is the x-weighted transverse position coordinate of the $n-1$ spectators.

$$
\left\langle\mathbf{a}_{\perp}^{2}(t)\right\rangle_{\tau}=\frac{1}{\lambda} \sum_{j=1}^{\tau-1} \frac{1}{j-\alpha(t)},
$$

Transverse size depends on internal dynamics
Transparency controlled by transverse size

Universality of Generalized Parton Distributions in Light-Front Holographic QCD

Guy F. de Téramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Alexandre Deur, SJB (HLFHS Collaboration)

$$
\begin{aligned}
& F_{\tau}(t)=\frac{1}{N_{\tau}} B\left(\tau-1, \frac{1}{2}-\frac{t}{4 \lambda}\right), \\
& N_{\tau}=B(\tau-1,1-\alpha(0)) \\
& B(u, v)=\int_{0}^{1} d y y^{u-1}(1-y)^{v-1}=[\Gamma(u) \Gamma(v) / \Gamma(u+v)] \\
& F_{\tau}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{M_{0}^{2}}\right)\left(1+\frac{Q^{2}}{M_{1}^{2}}\right) \cdots\left(1+\frac{Q^{2}}{M_{\tau-2}^{2}}\right)} \\
& F_{\tau}\left(Q^{2}\right) \sim\left(\frac{1}{Q^{2}}\right)^{\tau-1} \\
& M_{n}^{2}=4 \lambda\left(n+\frac{1}{2}\right), n=0,1,2, \ldots, \tau-2, \quad M_{0}=m_{\rho} \\
& \sqrt{\lambda}=\kappa=\frac{m_{\rho}}{\sqrt{2}}=0.548 \mathrm{GeV} \quad \frac{1}{2}-\frac{t}{4 \lambda}=1-\alpha_{R}(t) \\
& \alpha_{R}(t)=\rho \text { Regge Trajectory }
\end{aligned}
$$

$$
<\tilde{\mathbf{a}}_{\perp}^{2}(x)>=\frac{\int d^{2} \mathbf{a}_{\perp} \mathbf{a}_{\perp}^{2} q\left(x, \mathbf{a}_{\perp}\right)}{\int d^{2} \mathbf{a}_{\perp} q\left(x, \mathbf{a}_{\perp}\right)}
$$

At large light-front momentum fraction x , and equivalently at large values of Q^{2}, the transverse size of a hadron behaves as a point-like color-singlet object. This behavior is the origin of color transparency in nuclei.

Although the dependence of the transverse impact area as a function of x is universal, the behavior in Q^{2} depends on properties of the hadron, such as its twist.

$$
\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle_{\tau} \rightarrow \frac{4(\tau-1)}{Q^{2}}
$$

Mean transverse size as a function of Q and Twist

Transparency scale Q increases with twist
$\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle=-\frac{4}{F\left(Q^{2}\right)} \frac{d}{d Q^{2}} F\left(Q^{2}\right)$
$Q^{2} \mathrm{GeV}^{2}$
Light-Front Holography

$$
\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle=-\frac{4}{F\left(Q^{2}\right)} \frac{d}{d Q^{2}} F\left(Q^{2}\right)
$$

Proton has equal probability for $\tau=3$ and $\tau=4$

Two-Stage Color Transparency

Proton has equal probability for $\tau=3$ and $\tau=4$

Two-Stage Color Transparency

$$
14 G e V^{2}<Q^{2}<20 G e V^{2}
$$

If Q^{2} is in the intermediate range, then the twist-3 state will propagate through the nuclear medium with minimal absorption, and the protons which survive nuclear absorption will only have $\mathrm{L}=0$ (twist- 3).

The twist- $4 \mathrm{~L}=1$ state which has a larger transverse size will be absorbed.
Thus 50% of the events in this range of Q^{2} will have full color transparency and 50% of the events will have zero color transparency $(T=0)$.

The ep $\rightarrow \mathrm{e}^{\prime} \mathrm{p}^{\prime}$ cross section will have the same angular and Q^{2} dependence as scattering of the electron on an unphysical proton which has no Pauli form factor.

$$
Q^{2}>20 G e V^{2}
$$

However, if the momentum transfer is increased to $\mathrm{Q}^{2}>20 \mathrm{GeV}^{2}$, all events will have full color transparency, and the ep $\rightarrow \mathrm{e}^{\prime} \mathrm{p}^{\prime}$ cross section will have the same angular and Q^{2} dependence as scattering of the electron on a physical proton eigenstate, with both Dirac and Pauli form factor components.

Color transparency fundamental prediction of QCD

- Not predicted by strongly interacting hadronic picture \rightarrow arises in picture of quark-gluon interactions
- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_{A}, as a function of the momentum transfer, Q^{2}

Two-Stage Color Transparency for Proton

CLAS E02-110 rho electro-production

A $\left(\mathrm{e}, \mathrm{e}^{\prime} \rho^{0}\right)$

[^0]$<a_{\perp}^{2}\left(Q^{2}=4 G e V^{2}\right)>_{\tau=2} \simeq<a_{\perp}^{2}\left(Q^{2}=14 G e V^{2}\right)>_{\tau=3} \simeq<a_{\perp}^{2}\left(Q^{2}=22 G e V^{2}\right)>_{\tau=4} \simeq 0.24 \mathrm{fm}^{2}$
5% increase for T_{π} in ${ }^{12} C$ at $Q^{2}=4 G e V^{2}$ implies 5% increase for T_{p} at $Q^{2}=18 G e V^{2}$

Color Transparency and Light-Front Holography

- Essential prediction of QCD
- LF Holography: Spectroscopy, dynamics, structure
- Transverse size predicted by LF Holography as a function of Q
- Q scale for CT increases with twist, number of constituents
- Two-Stage Proton Transparency: Equal probability L=o,i
- No contradiction with present experiments
$Q_{0}^{2}(p) \simeq 18 \mathrm{GeV}^{2}$ vs. $Q_{0}^{2}(\pi) \simeq 4 \mathrm{GeV}^{2}$ for onset of color transparency in ${ }^{12} \mathrm{C}$

Novel Effects Derived from Light-Front Wavefunctions

- Color Transparency
- Intrinsic heavy quarks at high $\times c(x), b(x)$
- Asymmetries $s(x) \neq \bar{s}(x), \bar{u}(x) \neq \bar{d}(x)$
- Spin correlations, counting rules at x to I
- Diffractive deep inelastic scattering $\quad e p \rightarrow e p X$
- Nuclear Effects: Hidden Color

Light-Front Holography

- Color Confinement
- Origin of the QCD Mass Scale
- Meson and Baryon Spectroscopy
- Exotic States: Tetraquarks, Pentaquarks, Gluonium,
- Universal Regge Slopes: n, L, Mesons and Baryons
- Almost Massless Pion: GMOR Chiral Symmetry Breaking $M_{\pi}^{2} f_{\pi}^{2}=-\frac{1}{2}\left(m_{u}+m_{d}\right)\langle\bar{u} u+\bar{d} d\rangle+\mathcal{O}\left(\left(m_{u}+m_{d}\right)^{2}\right)$
- QCD Coupling at all Scales $\alpha_{s}\left(Q^{2}\right)$
- Eliminate Scale Uncertainties and Scheme Dependence

$$
\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>
$$

$$
\left[\frac{\vec{k}_{\perp}^{2}+m^{2}}{x(1-x)}+V_{\mathrm{eff}}^{L F}\right] \psi_{L F}\left(x, \vec{k}_{\perp}\right)=M^{2} \psi_{L F}\left(x, \vec{k}_{\perp}\right)
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

AdS/QCD:

Light-Front QCD

Fixed $\tau=t+z / c$

Coupled Fock states
Eliminate higher Fock states and retarded interactions

Effective two-particle equation

Azimuthat Basis ζ, ϕ
Single variable Equation $m_{q}=0$

Confining $A d S / Q C D$ potential!

Sums an infinite \# diagrams

Dilaton-Modífied AdS

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance $e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
- Color Confinement in z
- Introduces confinement scale κ
- Uses AdS $_{5}$ as template for conformal theory

$\operatorname{LF}(3+1)$

AdS $S^{\text {de Tèramond, }}$
ic Dictionarry

Light-Front Holograpbic Dictionary

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

z

Fixed $\tau=t+z / c$ $\phi(z)$

$$
\begin{gathered}
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holograpby: Unique mapping derived from equality of $L F$ andAdS 1 Is Antishadowing Non-Universal? -- Quark Specific? ptrix elements and identical equations of motion

AdS/QCD

Soft-Wall Model

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=M^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Single variable

Unique

Confinement Potential!
Conformal symmetry of the action

Confinement scale: $\quad \kappa \simeq 0.5 \mathrm{GeV}$

- de Alfaro, Fubini, Furlan:

Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

GeV units external to QCD: Only Ratios of Masses Determined

Prediction from AdS/QCD: Meson LFWF

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k^{2}}{2 \kappa^{2} x(1-x)}} \quad \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}
$$

$$
f_{\pi}=\sqrt{P_{q \bar{q}}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV} \quad \text { Same as DSE! }
$$

C. D. Roberts et al.

Provides Connection of Confinement to Hadron Structure

Spacelike Pion Form Factor

AdS/QCD Holographic Wave Function for the ρ Meson

 and Diffractive ρ Meson Electroproduction

(a) H 1
J. R. Forshaw,
R. Sandapen
$\gamma^{*} p \rightarrow \rho^{0} p^{\prime}$

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}}
$$

LFHQCD: Underlying Principles

- Poincarè Invariance: Independent of the observer's Lorentz frame: Quantization at Fixed Light-Front Time \boldsymbol{T}
- Causality: Information within causal horizon: Light-Front
- Light-Front Holography: AdS $_{5}=\operatorname{LF}(3+I)$

$$
z \leftrightarrow \zeta \text { where } \zeta^{2}=b_{\perp}^{2} x(1-x)
$$

- Introduce Mass Scale \boldsymbol{K} while retaining the Conformal Invariance of the Action (dAFF)
- Unique Dilaton in $\operatorname{AdS}_{5}: e^{+\kappa^{2} z^{2}}$
- Unique color-confining LF Potential $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$
- Superconformal Algebra: Mass Degenerate 4-Plet:

$$
\text { Meson } q \bar{q} \leftrightarrow \text { Baryon } q[q q] \leftrightarrow \text { Tetraquark }[q q][\bar{q} \bar{q}]
$$

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass! Meson

Baryon

$\phi_{M}, L_{B}+1 \quad \begin{gathered}\psi_{B+}, L_{B} \\ \text { Baryon }\end{gathered}$

$$
\begin{array}{r}
R_{\lambda}^{\dagger} \bar{q} \rightarrow[q q] \\
\overline{3}_{C} \rightarrow \overline{3}_{C}
\end{array}
$$

Tetraquark:
diquark + antidiquark

$$
\begin{array}{r}
R_{\lambda}^{\dagger} q \rightarrow[\bar{q} \bar{q}] \\
3_{C} \rightarrow 3_{C}
\end{array}
$$

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

Superconformal Quantum Mechanics Light-Front Holography
de Téramond, Bosch, Lorcé, sjb

Same slope

$\frac{M^{2}}{4 \kappa^{2}}$

$$
\left.M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right)\right)^{N \frac{7-}{2}}
$$

Universal slopes in n, L

$\frac{M_{\text {meson }}^{2}}{M_{\text {nucleon }}^{2}}=\frac{n+L_{M}}{n+L_{B}+1}$

Baryon Spectroscopy from LF Holography

$$
\begin{aligned}
& \left(-\frac{d^{2}}{d \zeta^{2}} \frac{1-4 L^{2}}{4 \zeta^{2}}+\lambda^{2} \zeta^{2}+2 \lambda(L+1)\right) \psi_{+}=M^{2} \psi_{+} \\
& \left(-\frac{d^{2}}{d \zeta^{2}} \frac{1-4(L+1)^{2}}{4 \zeta^{2}}+\lambda^{2} \zeta^{2}+2 \lambda L\right) \psi_{-}=M^{2} \psi_{-}
\end{aligned}
$$

- Eigenfunctions

$$
M^{2}=4 \lambda(n+L+1)
$$

- Eigenvalues
$\psi_{+}(\zeta) \sim \zeta^{\frac{1}{2}+L} e^{-\lambda \zeta^{2} / 2} L_{n}^{L}\left(\lambda \zeta^{2}\right), \quad \psi_{-}(\zeta) \sim \zeta^{\frac{3}{2}+L} e^{-\lambda \zeta^{2} / 2} L_{n}^{L+1}\left(\lambda \zeta^{2}\right)$

Same slope in n and L!

quark-diquark structure of baryons

Universal Hadronic Decomposition

$$
\frac{\mathcal{M}_{H}^{2}}{\kappa^{2}}=(1+2 n+L)+(1+2 n+L)+(2 L+4 S+2 B-2)
$$

- Universal quark light-front kinetic energy

Equal: $\rightarrow \Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)$ Virial
Theorem - Universal quark light-front potential energy

$$
\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)
$$

- Universal Constant Contribution from AdS and Superconformal Quantum Mechanics

$$
\Delta \mathcal{M}_{\text {spin }}^{2}=2 \kappa^{2}(L+\underset{\star}{2 S}+B-1)
$$

hyperfine spin-spin

QCD Myths

- Anti-Shadowing is Universal: Nuclear PDF Sum Rules!
- ISI and FSI are higher twist effects and universal
- High transverse momentum hadrons arise only from jet fragmentation -- baryon anomaly!
- heavy quarks only from gluon splitting
- renormalization scale cannot be fixed
- QCD condensates are vacuum effects
- Infrared Slavery
- Nuclei are composites of nucleons only
- Real part of DVCS arbitrary

Stan Brodsky

Diffractive Contribution to Deep Inelastic Scattering: Implications for QCD Sum Rules and Nuclear Parton Distributions

[^0]: L. El Fassi et al. PLB 712,326 (2012)

