
CMS Experiment at LHC, CERN Search for BFKL Data recorded: Tue May 5 11:05 Search for BFKL Run/Event: 243484 / 35552557 Lumi section: 50 Orbit/Crossing: 12904927 / Signatures in CMS

Low-x 2021

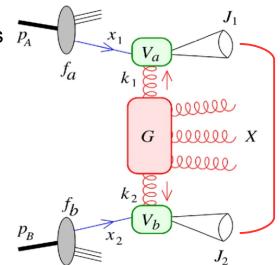
26 September 2021 to 1 October 2021

28/09/2021

Europe/Zurich timezone

Outline

- Introduction
- Overview of recent measurements by CMS
 - Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at 7 TeV JHEP 08 (2016) 139

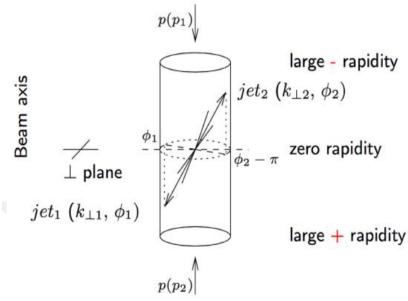

- Study of dijet events with large rapidity separation between the jets in pp collisions at 2.76 TeV (CMS PAS FSQ-13-004, will be submitted to JHEP soon)
- ► Hard color-singlet exchange in dijet events in pp collisions at 13 TeV (Phys. Rev. D **104**, 032009) (details in **C. Baldenegro's talk!**)
- Summary

At high \sqrt{s} , a kinematical domain can be reached where semi-hard parton interactions with $p_T << \sqrt{s/2}$ play a substantial role.

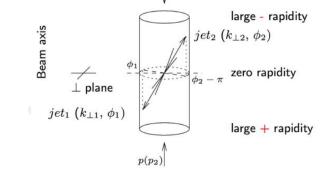
This asymptotical domain is described by Balitsky-Fadin-Kuraev- Lipatov (BFKL) .

- One of the most famous testing grounds for BFKL physics p_A are the **Mueller Navelet jets** with large **y** separation
- Differential cross section of the two jets production

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|\mathbf{k}_{J,1}|\,\mathrm{d}|\mathbf{k}_{J,2}|\,\mathrm{d}y_{J,1}\,\mathrm{d}y_{J,2}} = \\ \sum_{\mathrm{a,b}} \int_{0}^{1} \mathrm{d}x_{1} \, \int_{0}^{1} \mathrm{d}x_{2} \underbrace{f_{\mathrm{a}}(x_{1})f_{\mathrm{b}}(x_{2})}_{\mathbf{d}|\mathbf{k}_{J,1}|\,\mathrm{d}|\mathbf{k}_{J,2}|\,\mathrm{d}y_{J,1}\,\mathrm{d}y_{J,2}}_{\mathbf{d}|\mathbf{k}_{J,1}|\,\mathrm{d}|\mathbf{k}_{J,2}|\,\mathrm{d}y_{J,1}\,\mathrm{d}y_{J,2}}$$
 Collinear PDF

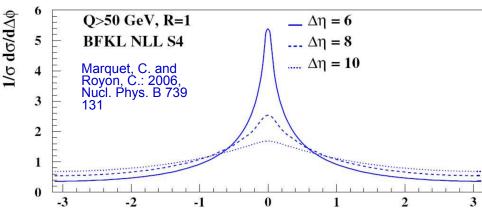


Partonic cross section in the BFKL framework:


$$\int d\phi_{J,1} d\phi_{J,2} \int d^2\mathbf{k}_1 d^2\mathbf{k}_2 V_{\mathrm{a}}(-\mathbf{k}_1, x_1) G(\mathbf{k}_1, \mathbf{k}_2, \hat{s}) V_{\mathrm{b}}(\mathbf{k}_2, x_2)$$

$$V_{\mathrm{a,b}} : \text{jet vertices}$$
G: BFKL Green's function

- Two jet production at LO:
 - deal with a back-to-back reaction
 - \blacktriangleright expect the azimuthal angles of the two jets always to be π
 - ▶ hence completely correlated!
- When **y between these jets increase**, the phase space allows for more and more emissions leading to an **angular decorrelation** between the jets.

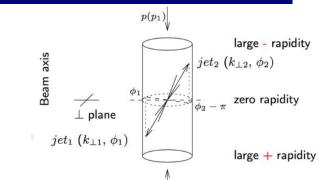


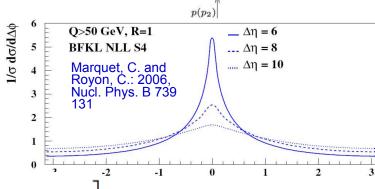
- Two jet production at LO:
 - deal with a back-to-back reaction
 - \blacktriangleright expect the azimuthal angles of the two jets always to be π
 - hence completely correlated!
- When y between these jets increase, the phase space allows for more and more emissions leading to an angular decorrelation between the jets.

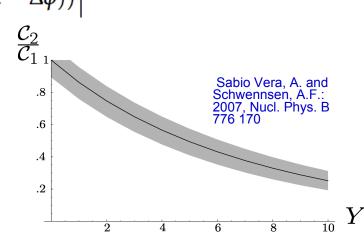
Normalised cross section as a function of azimuthal angle difference ($\Delta \phi = \phi_1 - \phi_2$) between MN

$$\frac{\mathsf{J}\underline{\mathsf{e}}\mathsf{ts}\,d\sigma}{\sigma\,d(\Delta\phi)}(\Delta y,p_{\mathsf{Tmin}}) = \frac{1}{2\pi} \left[1 + 2\sum_{n=1}^{\infty} C_n(\Delta y,p_{\mathsf{Tmin}}) \cdot \cos(n(\pi - \Delta\phi)) \right]$$

Two jet production at LO:

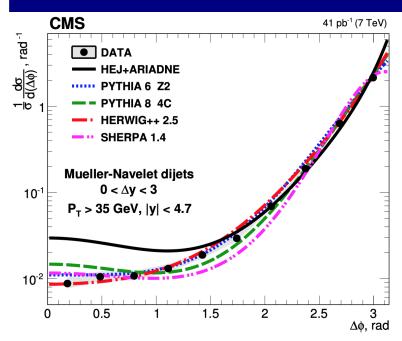

- deal with a back-to-back reaction
- \blacktriangleright expect the azimuthal angles of the two jets always to be π
- ▶ hence completely correlated!
- When y between these jets increase, the phase space allows for more and more emissions leading to an angular decorrelation between the jets.
- Normalised cross section as a function of azimuthal angle difference ($\Delta \phi = \phi_1 \phi_2$) between MN Jets

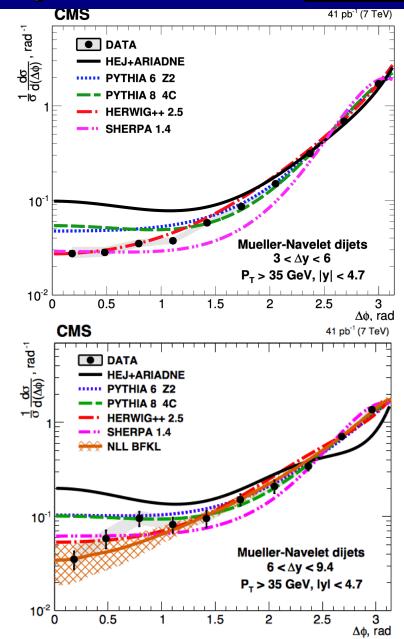

$$\frac{1}{\sigma}\frac{d\sigma}{d(\Delta\phi)}(\Delta y, p_{\text{Tmin}}) = \frac{1}{2\pi}\left[1 + 2\sum_{n=1}^{\infty} C_n(\Delta y, p_{\text{Tmin}}) \cdot \cos(n(\pi - \Delta\phi))\right]$$


▶The Fourier coefficients C_n are equal to the average cosines of the decorrelation angle

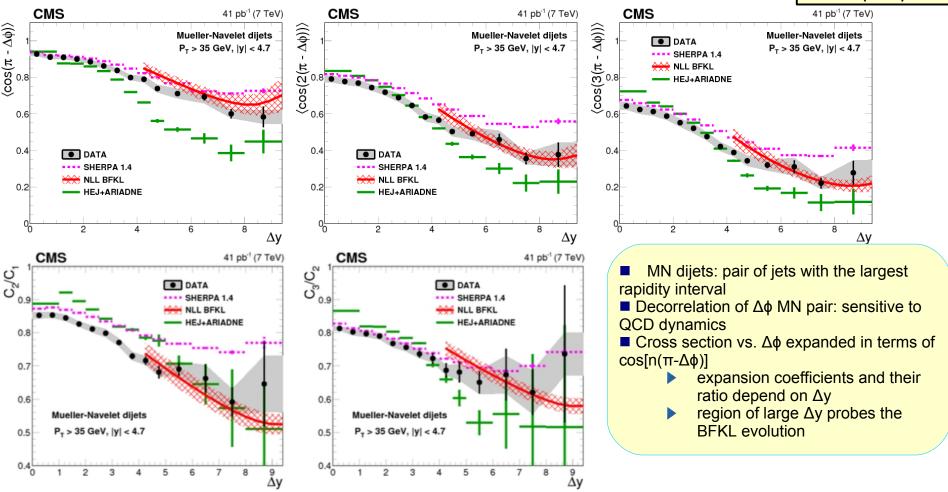
$$C_n(\Delta y, p_{\text{Tmin}}) = \langle \cos(n(\pi - \Delta \phi)) \rangle$$

■ Decorrelation coefficients are the observables can be measured at the LHC experiments!




Decorrelation of forward jets at 7 TeV

JHEP 08 (2016) 139



- Results given for up to $|\Delta y| = 9.4$
- Compared to predictions
 - DGLAP-based LO MCs
 - ▶ HEJ: LL BFKL-based MC
 - NLL BFKL prediction
- Angular variables also studied as a function of Δy

Mueller-Navelet dijet azimuthal decorrelations

JHEP 08 (2016) 139

- Good data-theory agreement: NLL BFKL analytical calculations at large Δy
- BFKL NLL calculations, parton level (small effects from hadronization) (JHEP 1305(2013) 096) sensitivity to MPI and

angular ordering

$$\int rac{1}{\sigma} rac{d\sigma}{d(\Delta \phi)} (\Delta y, p_{ ext{Tmin}}) = rac{1}{2\pi} \left[1 + 2 \sum_{n=1}^{\infty} C_n(\Delta y, p_{ ext{Tmin}}) \cdot cos(n(\pi - \Delta \phi))
ight]$$

Dijets with large rapidity separation @ 2.76 TeV

Scattering in the Bjorken limit (s ~ $Q^2 >> m^2$, x ~ 1) is described by DGLAP evolution.

CMS PAS FSQ-13-004

- Dijets with large rapidity separation (small-x, s \rightarrow \approx >> Q² fixed >> Λ^2_{QCD}) are recognised as a sensitive probe for effects of BFKL evolution
- Dijet K-factor is a theoretical quantity:

K-factor = cross-section / Born cross-section

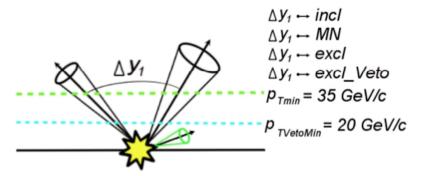
- Born cross-section:
 - no real and virtual corrections
 - In experimental point of view, virtual corrections cannot forbidden by kinematical condtions, so not measurable
- Exclusive dijet cross-sections contain virtual corrections.
- Analysis:

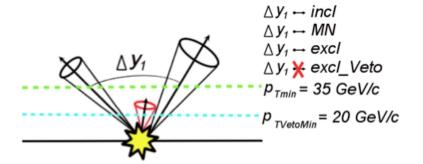
$$\Delta y = |y_1 - y_2| < 9.4$$

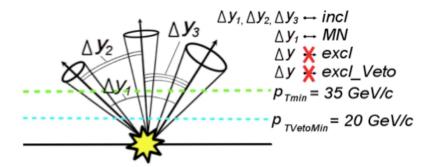
$$_{-}$$
 $p_{_{T}} > p_{_{T,min}} = 35 \text{ GeV}$

- low PU data
- Anti- k_{T} jets with R = 0.5

Dijets with large rapidity separation @ 2.76 TeV

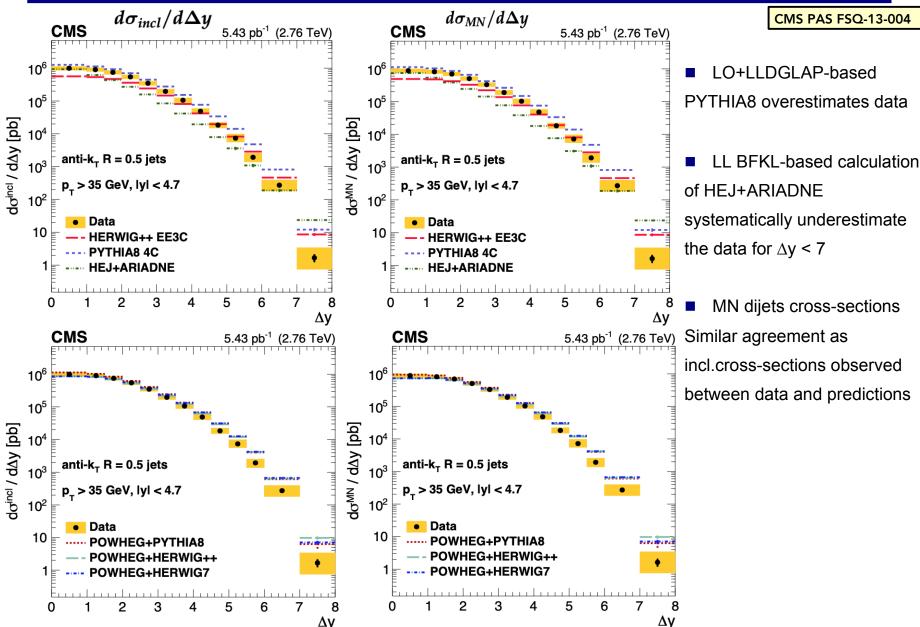

Definitions:


CMS PAS FSQ-13-004

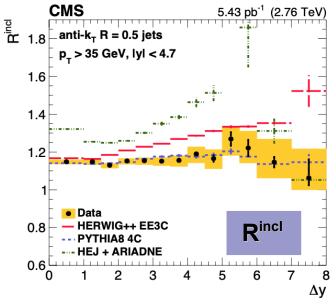

- σ_{incl} (inclusive x-section): all dijets with jets $p_{\tau} > 35 \text{ GeV}$
- $ightharpoonup \sigma_{\text{excl}}$ ("exclusive" x-section): exactly one dijet with jets $p_{_{T}} > 35$ GeV in the event
- σ_{MN} (Mueller-Navelet x-section): only the dijet with the most forward and most backward jets with p_T > 35 GeV
- $\sigma_{\text{excl veto}}$ ("exclusive with veto" x-section): "exclusive" x-section, no extra jets above $p_{\text{Tveto}} = 20 \text{GeV}$
- ► Lowering the veto threshold p_{Tveto} makes the R^{incl} and R^{MN} ratios closer to the theoretical K factor and increases the sensitivity to BFKL evolution effects.

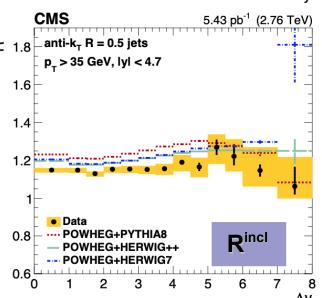
Observables : differential cross sections and ratios

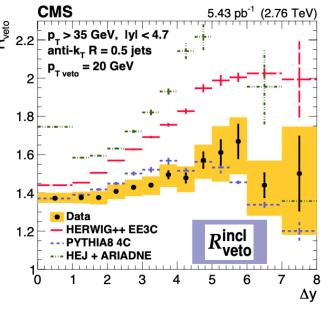
$$\begin{split} \mathrm{d}\sigma^{\mathrm{incl}}/\mathrm{d}\Delta y, & R^{\mathrm{incl}} = (\mathrm{d}\sigma^{\mathrm{incl}}/\mathrm{d}\Delta y)/(\mathrm{d}\sigma^{\mathrm{excl}}/\mathrm{d}\Delta y), \\ \mathrm{d}\sigma^{\mathrm{MN}}/\mathrm{d}\Delta y, & R^{\mathrm{MN}} = (\mathrm{d}\sigma^{\mathrm{MN}}/\mathrm{d}\Delta y)/(\mathrm{d}\sigma^{\mathrm{excl}}/\mathrm{d}\Delta y), \\ R^{\mathrm{incl}}_{\mathrm{veto}} = (\mathrm{d}\sigma^{\mathrm{incl}}/\mathrm{d}\Delta y)/(\mathrm{d}\sigma^{\mathrm{excl}}_{\mathrm{veto}}/\mathrm{d}\Delta y), \\ R^{\mathrm{MN}}_{\mathrm{veto}} = (\mathrm{d}\sigma^{\mathrm{MN}}/\mathrm{d}\Delta y)/(\mathrm{d}\sigma^{\mathrm{excl}}_{\mathrm{veto}}/\mathrm{d}\Delta y). \end{split}$$

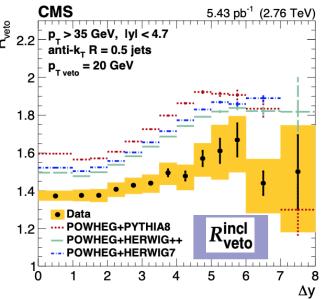


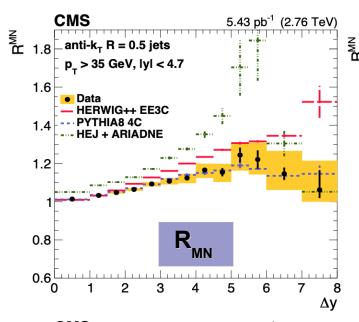
Differential cross sections

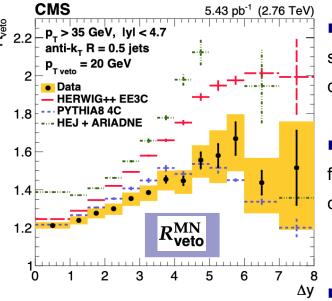

Search for BFKL signatures in CMS, Low-x 2021


Ratios Rincl and Rincl


veto

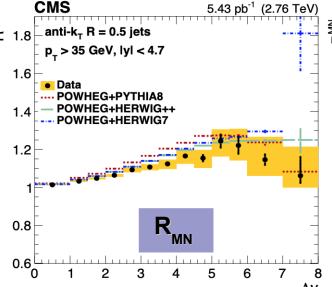


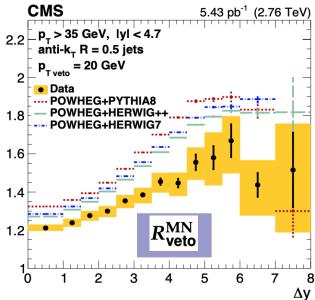



- Ratio R^{incl} of the cross sections for inclusive to "exclusive" dijet production.
- ► PYTHIA8 is in agreement
- Overestimation by HERWIG++& HEJ+ARIADNE
- ▶ Inclusion of POWHEG to LL DGLAP-based prediction of HERWIG degrades the quality of the description for $\Delta y < 2$ but improves it for large y intervals.
- Ratio **R**incl of the x-sections for incl. to "exclusive" with veto dijet production
- Overestimation by HERWIG++& HEJ+ARIADNE
- ►none of the models considered reproduces the data throughout.

Ratios R^{MN} and R^{MN}_{veto}

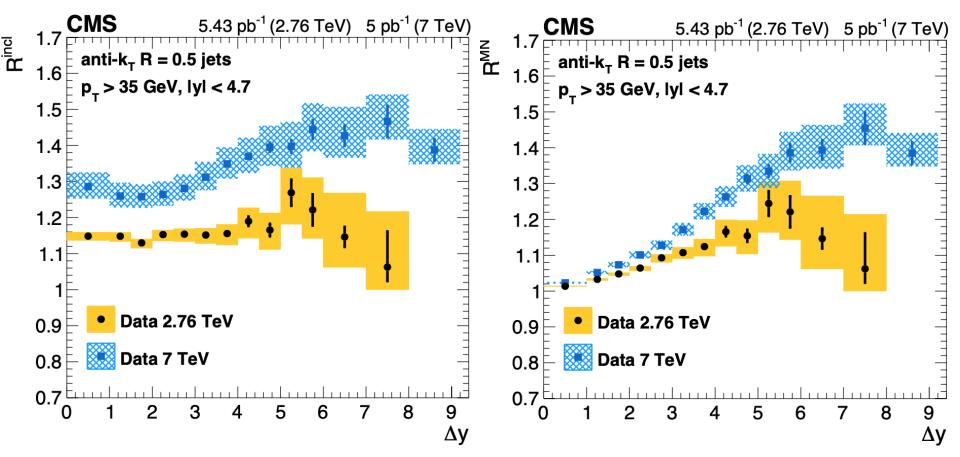
NEWI


CMS PAS FSQ-13-004



■ Ratio R^{MN} of the cross sections for MN to "exclusive" dijet production.

■ Ratio *R*^{MN}_{veto} of the x-sections for MN to "exclusive" with veto dijet production



Similar results to Rincl. vs.

Rincl veto

Comparison of Ratios for different √s

CMS PAS FSQ-13-004

- Ratios of cross-sections for inclusive (left) and MN (right) and "exclusive" dijet production, measured @ 2.76 & 7 TeV
- The ratios rise faster with Δy at higher energy, which may reflect both the increasing available phase space and BFKL dynamics
- At very large Δy , the ratios decrease because of the kinematic limitations on the production of events with more than two jets, each with $p_{_{T}} > 35 \text{ GeV}$

Summary

- Many interesting results from CMS,
 - wide range of jet measurements at various collision energies, improving our understanding of QCD
- Mueller-Navelet dijet decorrelations analytical NLL BFKL calculation agrees with data
 - Higher collision energies may be more decisive
- Dijet events with large rapidity separation between the jets @ 2.76 TeV
 - ▶ MN and inclusive dijet cross sections and their ratios are measured up to $\Delta y \leq 8.0$ between the jets.
 - None of the DGLAP based MC generators provide a reasonable description.
 - Calculations at the NLL, which are not yet available, are needed.
- New data are still to come to be used in precision QCD analyses and to improve the understanding of the BFKL evolution!

THANKS FOR YOUR ATTENTION!

BACKUP