

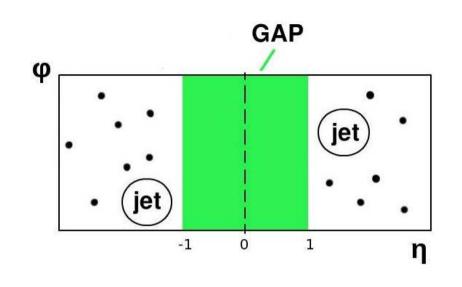


### Is BFKL factorization valid for Mueller-Tang jets?

### Dimitri Colferai (colferai@fi.infn.it)

#### University of Florence and INFN

In collaboration with F. Deganutti and C. Royon (Kansas Univ.)


Low-x 2021 Isola d'Elba (Italy) 26 Sept – 1 Oct 2021

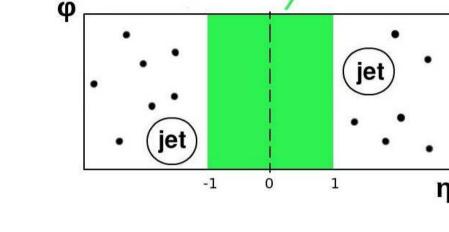
### **Mueller-Tang jets**

An important process for studying PT high-energy QCD and the Pomeron at hadron colliders [Mueller, Tang '87]

Final state: • two jets with similar  $p_T$ 

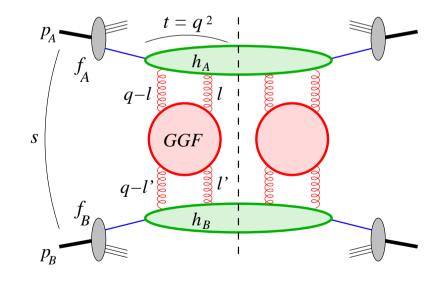
• large rapidity distance  $Y \simeq \log(s/p_T^2)$ ;




• absence of any additional emission in central rapidity region (gap)

### **Mueller-Tang jets**

An important process for studying PT high-energy QCD and the Pomeron at hadron colliders [Mueller, Tang '87]

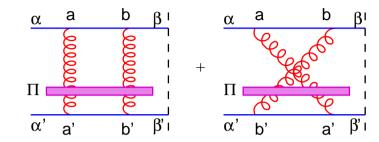

Final state: • two jets with similar  $p_T$ 

• large rapidity distance  $Y \simeq \log(s/p_T^2)$ ;



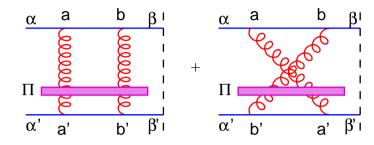
GAP

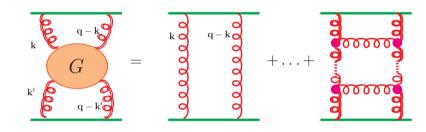
- absence of any additional emission in central rapidity region (gap)
  - Gap ⇒ mostly colour-singlet exchanges contribute to cross section
  - $Y \gg 1 \Rightarrow$  enhanced PT series  $(\alpha_s Y)^n$ resummed into singlet BFKL GGF
  - In LLA factorization formula holds




### Outline

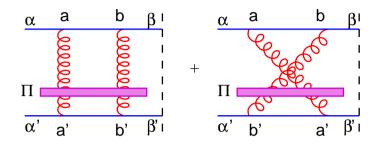
- Introduction:
  - Review of Mueller-Tang jets in LO and leading  $\log s$  (LL)
  - LL factorization formula
- Beyond LL approximation
  - Phenomenology with LL and NLL GGF
  - $\rightarrow$  need of a full NLL calculation?
- NLL impact factors
  - Structure of NLL impact factor calculation
  - Implementation of NLL impact factors: numerical and conceptual issues
  - Breaking of factorization at NLL level
- Other PT contributions to Mueller-Tang jets
  - Colour singlet VS non-singlet exchange
- Conclusions and outlook

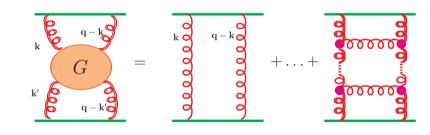

### **Mueller-Tang jets at LO and LL**

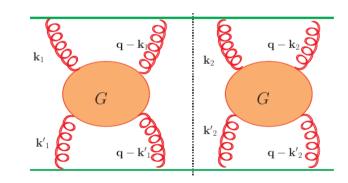

LO amplitude: box + crossed diagrams projected onto colour-singlet  $\Pi^{ab,a'b'} = \delta^{ab} \delta^{a'b'} / (N_c^2 - 1)$ 



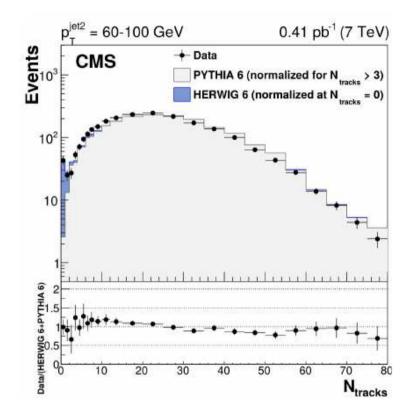
### **Mueller-Tang jets at LO and LL**


- LO amplitude: box + crossed diagrams projected onto colour-singlet  $\Pi^{ab,a'b'} = \delta^{ab} \delta^{a'b'} / (N_c^2 - 1)$
- Elastic amplitude at higher orders:
  affected by large log<sup>n</sup> s due to
  gluon-ladder diagrams
  (UV and IR finite)
- All LL resummed in (colour-singlet) gluon Green function (GGF)



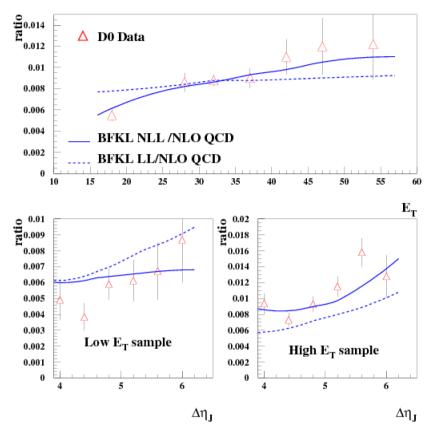




### **Mueller-Tang jets at LO and LL**


- LO amplitude: box + crossed diagrams projected onto colour-singlet  $\Pi^{ab,a'b'} = \delta^{ab} \delta^{a'b'} / (N_c^2 - 1)$
- Elastic amplitude at higher orders:
  affected by large log<sup>n</sup> s due to
  gluon-ladder diagrams
  (UV and IR finite)
- All LL resummed in (colour-singlet) gluon Green function (GGF)
- LL partonic cross section:2 GGF \* 2 (trivial) impact factors
- Two outgoing partons to be identified with the (back-to-back) jets

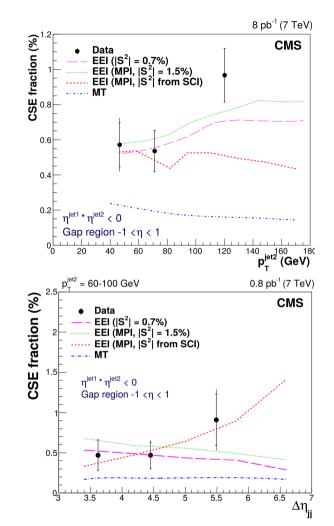






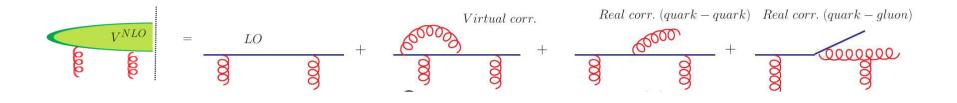

### **CMS analysis at 7 TeV**




- Charged-particle multiplicity in the gap region between the tagged jets compared to PYTHIA and HERWIG predictions.
- HERWIG 6: include contributions from color singlet exchange (CSE), based on BFKL at LL.
- PYTHIA 6: inclusive dijets (tune Z2<sup>\*</sup>), no-CSE.

### **D0 and CMS analysis at 7 TeV**

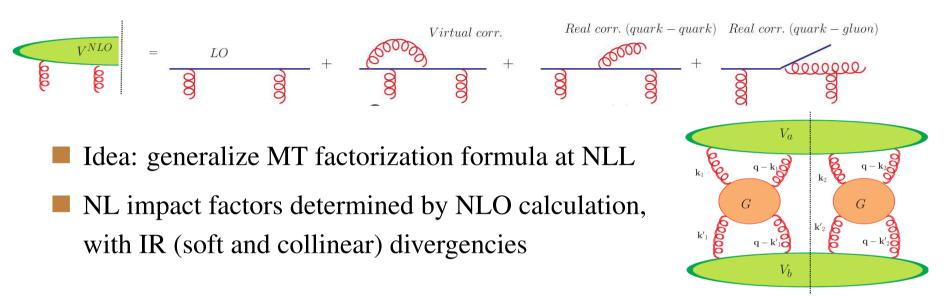


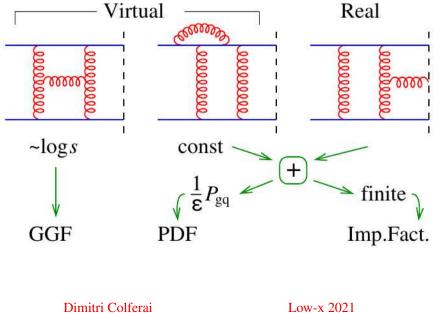

Left: LL & NLL BFKL at Tevatron [hep-ph/1012.3849].

• Ratio  $R = \frac{NLL^* BFKL}{NLOQCD}$  of jet-gap-jet events to inclusive dijet events as a function of  $p_t$  and the rapidity gap Y.




NLL\* BFKL calculations different implementations of the soft rescattering processes (EEI models), describe many features of the data, but none of the implementations is able to simultaneously describe all the features of the measurement. Ekstedt, Enberg, Ingelman, [1703.10919]


Compelling to include all NLL corrections into the game



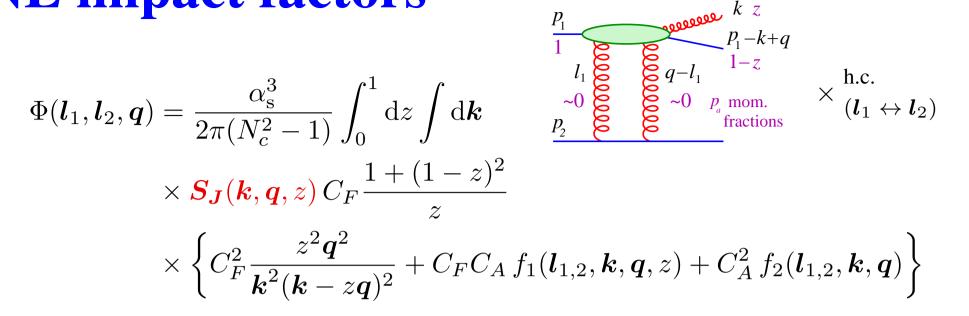

Compelling to include all NLL corrections into the game



Compelling to include all NLL corrections into the game



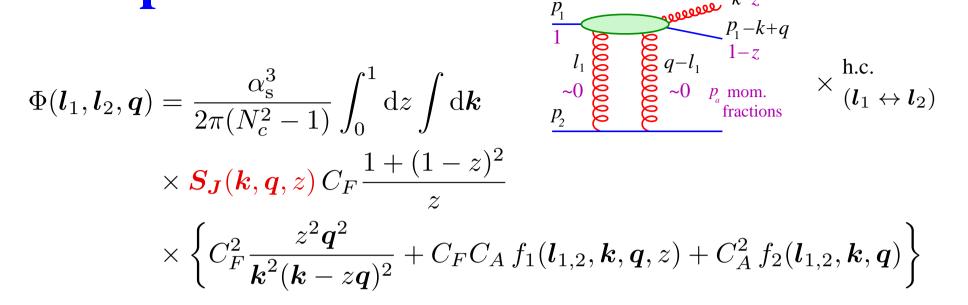



Not a trivial statement:

- all log(s) terms must reproduce LL kernel (GGF at 1st order)
- all IR singularities (taken away collinear ones proportional to splitting functions) must cancel

Isola d'Elba (Italy), 26 Sept - 01.10 Oct 2021

# NL impact factors $\Phi(l_1, l_2, q) = \frac{\alpha_s^3}{2\pi (N_c^2 - 1)} \int_0^1 dz \int dk$ $\sum_{\substack{p_1 \dots p_{q-l_1} \dots p_{q-k+q} \\ n \mid q-l_1 \dots q}{p_1 \dots p_{q-l_1} \dots p_{q-k+q}} \times \frac{h.c.}{(l_1 \leftrightarrow l_2)}$ $\times S_J(k, q, z) C_F \frac{1 + (1 - z)^2}{z}$ $\times \left\{ C_F^2 \frac{z^2 q^2}{k^2 (k - zq)^2} + C_F C_A f_1(l_{1,2}, k, q, z) + C_A^2 f_2(l_{1,2}, k, q) \right\}$


The calculation of NL impact factors for Mueller-Tang jets was performed by [Hentchinski, Madrigal Martinez, Murdaca, Sabio Vera, '14] using Lipatov's effective action.



- The calculation of NL impact factors for Mueller-Tang jets was performed by [Hentchinski, Madrigal Martinez, Murdaca, Sabio Vera, '14] using Lipatov's effective action.
  - Phase-space integration restricted by IR-safe jet algorithm (e.g.,  $kt \simeq cone$ )
- In these diffractive processes, "lower" quark  $p_2$  is the "backward" jet Other two partons are in the forward hemisphere and form (at least) one jet:

• 
$$\Delta \Omega \equiv \sqrt{\Delta y^2 + \Delta \phi^2} < R \quad \Rightarrow J = \{qg\}$$
 composite jet

•  $\Delta \Omega > R \Rightarrow J = \{g\}$  and q outside jet cone or  $J = \{q\}$  and g outside



- The calculation of NL impact factors for Mueller-Tang jets was performed by [Hentchinski, Madrigal Martinez, Murdaca, Sabio Vera, '14] using Lipatov's effective action.
  - Phase-space integration restricted by IR-safe jet algorithm (e.g.,  $kt \simeq cone$ )
- In these diffractive processes, "lower" quark  $p_2$  is the "backward" jet Other two partons are in the forward hemisphere and form (at least) one jet:

• 
$$\Delta \Omega \equiv \sqrt{\Delta y^2 + \Delta \phi^2} < R \Rightarrow J = \{qg\}$$
 composite jet

•  $\Delta \Omega > R \Rightarrow J = \{g\}$  and q outside jet cone or  $J = \{q\}$  and g outside

F.Deganutti and I checked their calculation with standard QCD Feynman rules.

### **Problem with NL impact factor**

$$\begin{split} \Phi(\boldsymbol{l}_{1},\boldsymbol{l}_{2},\boldsymbol{q}) &= \frac{\alpha_{\rm s}^{3}}{2\pi(N_{c}^{2}-1)} \int_{0}^{1} {\rm d}z \int {\rm d}\boldsymbol{k} & \stackrel{p_{1}}{\underset{\sim}{}^{1}} \underbrace{\int_{l_{1}}^{p_{2}} \frac{q-l_{1}}{2} \int_{l_{1}}^{1-z} \times (\boldsymbol{l}_{1} \leftrightarrow \boldsymbol{l}_{2})}_{P_{2}} \\ &\times \boldsymbol{S}_{\boldsymbol{J}}(\boldsymbol{k},\boldsymbol{q},z) C_{F} \frac{1+(1-z)^{2}}{z} \\ &\times \left\{ C_{F}^{2} \frac{z^{2}\boldsymbol{q}^{2}}{\boldsymbol{k}^{2}(\boldsymbol{k}-z\boldsymbol{q})^{2}} + C_{F}C_{A} f_{1}(\boldsymbol{l}_{1,2},\boldsymbol{k},\boldsymbol{q},z) + C_{A}^{2} f_{2}(\boldsymbol{l}_{1,2},\boldsymbol{k},\boldsymbol{q}) \right\} \end{split}$$

n

There is a problem in the  $C_A^2$  term, due to  $\int_0^1 dz/z$  integration

If integration is not constrained, we have a divergence

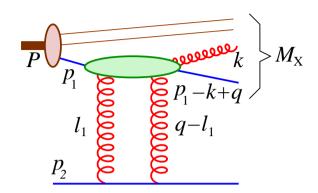
k z

### **Problem with NL impact factor**

n

There is a problem in the  $C_A^2$  term, due to  $\int_0^1 dz/z$  integration

- If integration is not constrained, we have a divergence
- Such region  $z \to 0$  corresponds to gluon in central (and backward) region, where the emission probability of the gluon turns out to be flat in rapidity:  $\int_0^1 dz/z = \int_{-\infty}^{\log \sqrt{s}/k} dy$
- If we believe the IF calculation to be reliable at least in the forward hemisphere  $(y > 0) \Rightarrow \int_0^{\log \sqrt{s}/k} dy = \int_{k/\sqrt{s}}^1 dz/z = \frac{1}{2} \log(s/k^2)$
- But a log(s) in IFs is not acceptable within the spirit of BFKL factorization

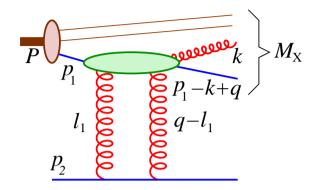

k z

### **Constraint on diffractive invariant mass**

In order to solve this problem, [HMMS] constrain mass of diffractive system  $M_X^2 \equiv (P+q)^2 < M_{\rm max}^2$ 

In this case  $z \gtrsim k^2/M_{\rm max}^2$ 

 $\Rightarrow$  finite z-integral  $\sim \log(M_{\rm max}^2/k^2)$ 




### **Constraint on diffractive invariant mass**

In order to solve this problem, [HMMS] constrain mass of diffractive system  $M_X^2 \equiv (P+q)^2 < M_{\rm max}^2$ 

In this case  $z \gtrsim k^2/M_{\rm max}^2$ 

 $\Rightarrow \quad \text{finite } z\text{-integral} \sim \log(M_{\text{max}}^2/k^2)$ 

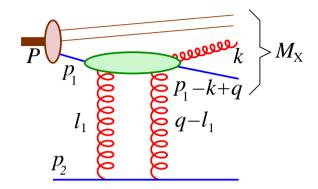


Crucial question:

do we really need to can we

impose a cut on diffractive mass?

Arguments in favour


• Avoid  $\log s$  in IF

### **Constraint on diffractive invariant mass**

In order to solve this problem, [HMMS] constrain mass of diffractive system  $M_X^2 \equiv (P+q)^2 < M_{\rm max}^2$ 

In this case  $z \gtrsim k^2 / M_{\text{max}}^2$ 

 $\Rightarrow \quad \text{finite } z\text{-integral} \sim \log(M_{\text{max}}^2/k^2)$ 



Crucial question:

do we really need to can we

impose a cut on diffractive mass?

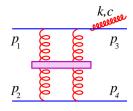
Arguments in favour

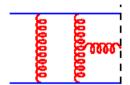
• Avoid  $\log s$  in IF

Arguments against

- Singlet exchange should suppress gluons in central region, no log s (wrong!)
- Diffractive mass requires measuring outgoing proton or its remnants
- Diffractive mass cut effective if able to measure arbitrarily soft particle energies

Low-x 2021


Isola d'Elba (Italy), 26 Sept - 01.10 Oct 2021


### **Violation of BFKL factorization**

The theoretical argument is wrong:

- $\blacksquare$  colour-singlet momentum transfer, no  $\log s$
- colour-singlet either below or above.  $\log s$  unavoidable

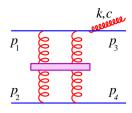
But we cannot select diagrams!

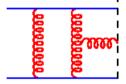




### **Violation of BFKL factorization**

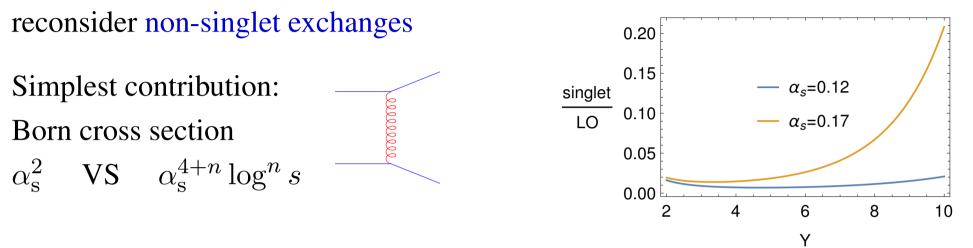
The theoretical argument is wrong:


- colour-singlet momentum transfer, no  $\log s$
- colour-singlet either below or above.  $\log s$  unavoidable

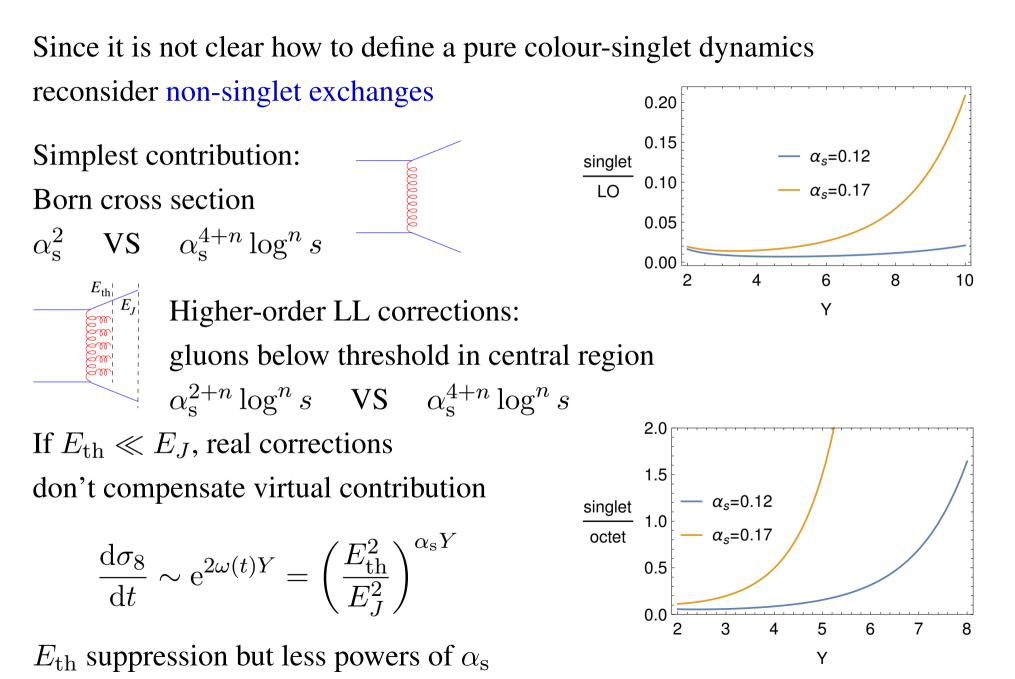

But we cannot select diagrams! We can only select final states.

- Given that we cannot measure particles (partons, hadrons) below energy threshold  $E_{\rm th}$ , we can at most require no activity <u>above threshold</u> within the rapidity gap
- In This prescription is IR safe because inclusive for  $E_g < E_{\rm th}$

Here the gluon can have any rapidity  $\Rightarrow \sigma \Rightarrow C_A^2 \frac{E_{\text{th}}^2}{E_I^2} \log \frac{s}{E_I^2}$ 


The experimental argument is valid, therefore BFKL factorization is violated (impact factors depend on s). However violation is expected to be small.






### **Singlet VS non-singlet colour exchanges**

Since it is not clear how to define a pure colour-singlet dynamics



## Singlet VS non-singlet colour exchanges



### **Conclusions and outlook**

- Theoretical determination of MT jets at LHC in NLL is feasible and close to completion [see F.Deganutti's talk]
- Strictly speaking jet-gap-jet observable violates BFKL factorization in NLLA
- Nevertheless the violation is small and factorization formula is expected to work well for LHC (non-asymptotic) kinematics.
- Colour non-singlet contributions are expected to be non-negligible at LHC, in particular for small value of rapidity distance between jets.
   Mueller-Navelet contrubution below threshold should be included