

TOTEM results

Frigyes NEMES on behalf of the TOTEM experiment CERN*

Low-x 2021 La Biodola, Isola d'Elba, Italy September 26. – October 1, 2021

*Also at Wigner RCP, Budapest, Hungary MATE, Gödöllő - Gyöngyös

Experimental layout & LHC optics (LHC Run II)

Low-x. 26/09 - 01/10/2021

The Roman Pot (RP) stations of the TOTEM experiment

RP stations:

- 2 units (Near, Far) at about 5 m (RP220) and 10 m (RP210) distance
- Unit: 3 moveable RP to approach the beam and detect very small proton scattering angles (few µrad)
- BPM: precise position relative to beam
- Overlapping detectors: relative alignment (10 μm inside unit among 3 RPs)

10 planes of edgeless detectors

RP unit: 2 vertical, 1 horizontal pot + BPM

Si edgeless detector Frigves Nemes, TOTEM experiment

- $\beta^* = 3.5 \text{ m LHC optics}$
- Horizontal and vertical scattering angles:

$$\theta_x^* = \frac{1}{\frac{\mathrm{d}L_x}{\mathrm{d}s}} \left(\theta_x - \frac{\mathrm{d}v_x}{\mathrm{d}s} x^* \right), \ \theta_y^* = \frac{y}{L_y}$$

Momentum conservation is required in elastic events:

<u>Published in EPL 95 (2011) 41001</u>

Published in EPL 95 (2011) 41001:

- |t| range spans from 0.36 to 2.5 GeV²
- Below $|t| = 0.47 \text{ GeV}^2$ exponential $e^{-B|t|}$ behavior
- Dip moves to lower |t|, proton becomes "larger"
- 1.5 2.5 GeV² power low behavior $|t|^{-n}$

proton-proton

27.43 GeV

10

ISR

(GeV

TOTEM cross-sections measurement at $\sqrt{s} = 13$ TeV

Published in Eur. Phys. J. C (2019) 79: 103)

 $\beta^* = 90 \text{ m}, 5\sigma_{RP} \text{ RP}$ distance from beam

List of TOTEM publications

http://totem.web.cern.ch/Totem/publ_new.html

Low-x. 26/09 - 01/10/2021

- Collinearity cut in the horizontal plane
- Optics matching → kinematics reconstruction uncertainty ~ 2 permil
- Elastic signal selection: clean sample after coll., spectrometer and vertex cuts
- Discriminator: compatibility with beam divergence required

Ingredients:

- Elastic rate as a function of |t| to determine the optical point OP
- N_{inel} is measured with the T2 inelastic telescope
- Cross-sections with $\rho = 0.1$ from TOTEM ρ measurement (see upcoming slides)

Cross-section measurement at $\sqrt{s} = 2.76$ TeV

Manuscript in preparation

 β^* = 11 m, 4.3 σ_{RP} RP distance from beam

Low-x. 26/09 - 01/10/2021

Frigyes Nemes, TOTEM experiment

2.76 TeV luminosity independent cross-sections ($\beta^* = 11$ m optics)

$\sigma_{ m tot}$	σ_{el}	σ_{inel}
[mb]	[mb]	[mb]
84.7 ± 3.3	21.8 ± 1.4	62.8 ± 2.9

- Elastic to total cross-section ratio
- The nuclear slope as a function of Vs
- The deviation for Vs > 3 TeV from the linear extrapolation is highly significant

ρ measurement at vs = 13 TeV

Probing the existence of a colourless C-odd three-gluon compound (Odderon at t=0)

Published in Eur. Phys. J. C (2019)

β* = 2500 m

 $[\mu rad]$

 θ_x^{*L}

Basic properties of the data:

• $|t|_{min} = 8 \times 10^{-4} \text{ GeV}^2$

Analysis aims:

- Measure do_{el}/dt at the smallest possible |t|
- A_{C+H}= Coulomb + Hadronic + Interference terms
- Interference: the **phase** of hadronic amplitude appears

-	$ t _{\rm max} = 0.07 { m GeV^2}$					$ t _{\rm max} = 0.15 {\rm GeV^2}$			
	N_b	χ^2/ndf	ρ	$\sigma_{ m tot}$	[mb]	χ^2/ndf	ρ	$\sigma_{\rm tot}$	[mb]
	1	0.9	0.09 ± 0.01	111.8	3 ± 3.1	2.1	-		-
	2	0.9	0.10 ± 0.01	111.9	0 ± 3.1	1.0	0.09 ± 0.01	111.9	9 ± 3.1
	3	0.9	0.09 ± 0.01	111.9	0 ± 3.0	0.9	0.10 ± 0.01	112.1	1 ± 3.1
		$\frac{t/dt-ref}{ref}$, ref = 633e ^{-20.4} t + $\frac{d\sigma^{C}}{dt}$	0.05 0 -0.05 -0.1			full syst. unc. ban syst. unc. without fit, hadronic comp fit, all component data with stat. unc	$\frac{1}{1}$		
		do	-0.15	<u> </u>]	
			0		0.05	0.1	0.	15	
	/		_				t (GeV ²)		

ρ as a function of \sqrt{s} : evidence for Odderon exhange

Notes:

- Lumi-independent σ_{tot} from $\beta^* = 90$ m: 110. 6 ± 3.4 mb
- ρ from $\beta^* = 2.5$ km, lumi-independent normalization: 0.09 ± 0.01
- ρ from $\beta^* = 2.5$ km, Coulomb normalization: 0.08(5) ± 0.01
- σ_{tot} from $\beta^* = 2.5$ km, Coulomb normalization: 110.3 ± 3.5 mb
- Combined lumi-independent and Coulomb normalization σ_{tot} : 110.5 ± 2.4 mb

Differential cross-section measurement at 13 TeV

- $O(10^9)$ observed elastic events (trigger rate 50 × Run I)
- Acceptance and beam divergence corrected
- 3/4 correction, matched optics
- Unfolded

The diffractive minimum at 13 TeV in details

- Result confirms with unprecedented precision at the TeV scale the dip structure (**R** = max / dip)
- Hadronic elastic @ TeV sqrt(s) dominated by t-channel exchange of colourless gluon states
- 2 (or even) gluon exchange (C = +): "Pomeron" (~ mostly imaginary) \Rightarrow pp vs ppbar invariance
- 3 (or odd) gluon exchange (C = -): "Odderon" (expected ~ real) \Rightarrow different sign for pp and ppbar
- How observe indications of 3-gluon exchange?
- At low t: by measuring rho = real/imaginary amplitude Coulomb-nuclear interference
- At dip: 2g exchange (~ imaginary) suppressed \Rightarrow 3g exchange (~ real) observable

Low-x. 26/09 -01/10/2021

Frigyes Nemes, TOTEM experiment

Differential cross –section measurement at vs = 2.76 TeV

Implication on the existence of a colourless C-odd 3-gluon compound (Odderon at t \neq 0)

Published in Eur. Phys. J. C (2020)

 β^* = 11 m, 13 σ_{RP} RP distance from beam

The diffractive minimum at $\sqrt{s} = 2.76$ TeV

Note:

 "Neglecting the small energy difference in Vs between the measurements of the TOTEM and D0 collaborations, the results provide evidence for a colourless C-odd 3-gluon compound exchange in the t-channel of proton-proton elastic scattering"

Note:

- Persistency of diffractive dip in pp, absence of diffractive dip in ppbar
- R = max / dip approximately constant in pp and significantly larger than in ppbar
- **Significance** have been evaluated in close collaboration with D0: paper is published, see presentation from D0 and TOTEM

- 7 TeV first measurement of dip in pp at TeV scale
- 13 TeV total cross-section measurement
- 13 TeV ρ measurement
 - O Coulomb normalization leading to independent total cross-section measurement
 - Evidence for t-channel exchange of colourless C-odd 3g compound (odderon)
- 13 TeV differential cross-section measurement
 - O Confirms with unprecedented precision the dip structure in pp scattering at TeV scale
- 2.76 TeV, total cross-section measurement
 - O Total, elastic and inelastic cross-section measurement (manuscript in preparation)
 - $\odot~$ Change of Vs behaviour of slope parameter B at around 3 TeV
- 2.76 TeV, differential cross-section measurement
 - $\odot~$ Confirming the dip in pp close in energy to the D0 ppbar data without dip
 - Neglecting energy difference, provides evidence for colourless C-odd 3g compound (odderon)

Thank you for your attention !

Backup slides

Schematic layout of the magnet lattice at IP5:

Note on proton kinematics reconstruction & optics imperfections

Machine imperfections alter the optics:

- Strength conversion error, $\sigma(B)/B \approx 10^{-3}$
- Beam momentum offset, $\sigma(p)/p \approx 10^{-3}$
- Magnet rotations, $\sigma(\phi) \approx 1$ mrad
- Magnetic field harmonics, $\sigma(B)/B \approx 10^{-4}$
- Power converter errors, $\sigma(I)/I \approx 10^{-4}$
- Magnet positions Δx , $\Delta y \approx 100 \ \mu m$

$$t(v_{x}, L_{x}, L_{y}, ..., p) = -p^{2} \cdot \left(\Theta_{x}^{*2} + \Theta_{y}^{*2}\right)$$

→ Precise model of the LHC optics is indispensable!

Novel method from TOTEM:

- Use **measured** proton data from RPs
- Based on kinematics of elastic candidates
- Published in New Journal of Physics
- <u>http://iopscience.iop.org/1367-2630/16/10/103041/</u>

- Large O(20 %) but well measurable, inefficiencies
- Two data sets DS1 and DS2
- Compatibility per diagonal per data set within uncertainties required

Correction [%]	D	S1	DS2		
	Diag. 1	Diag. 2	Diag. 1	Diag. 2	
$\mathcal{I}_{3/4}$	25.86 ± 0.2	22.04 ± 0.2	20.34 ± 0.1	21.37 ± 0.1	
$\mathcal{I}_{2/4}$	19.91 ± 0.2	16.16 ± 0.2	16.09 ± 0.2	17.11 ± 0.2	
$\mathcal{I}_{2/4\mathrm{diff.}}$	2.38 ± 0.05	1.61 ± 0.04	1.33 ± 0.02	1.5 ± 0.02	
$\eta_{ m d}$	80.93 ± 0.01		99.95 ± 0.01		
$\eta_{ m tr}$	99.9 ± 0.1		$99.9~\pm~0.1$		

• Total correction per event:

$$f(\boldsymbol{\theta}^*, \boldsymbol{\theta}_y^*) = \frac{1}{\boldsymbol{\eta}_{\rm d}} \boldsymbol{\eta}_{\rm tr} \cdot \frac{\mathcal{C}(\boldsymbol{\theta}^*, \boldsymbol{\theta}_y^*)}{1 - \mathcal{I}} \cdot \frac{1}{\Delta t}$$

$$\mathcal{I} = \mathcal{I}_{3/4}(\boldsymbol{\theta}_{y}^{*}) + \mathcal{I}_{2/4} + \mathcal{I}_{2/4\,\mathrm{diff}}$$