Comparison of pp and $p\overline{p}$ elastic differential cross sections of TOTEM and D0 experiments and Observation of Odderon exchange

Carlos Avila, Universidad de Los Andes, Colombia (Carlos.Avila@cern.ch)

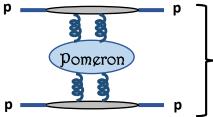
On behalf of D0 and TOTEM Collaborations

Low-x 2021 Workshop

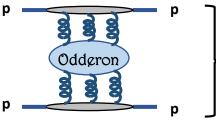
TALK OUTLINE

- 1. Introduction
- 2. Brief description of D0 and TOTEM $\frac{d\sigma}{dt}$ measurements
- 3. Comparison of TOTEM $\frac{d\sigma^{pp}}{dt}$ and D0 $\frac{d\sigma^{p\overline{p}}}{dt}$:
 - 3.1 Bump to dip ratio
 - 3.2 Characteristic points
 - 3.3 Extrapolation
 - 3.4 Uncertainties and normalization
- 4. Results
- 5. Concluding remarks

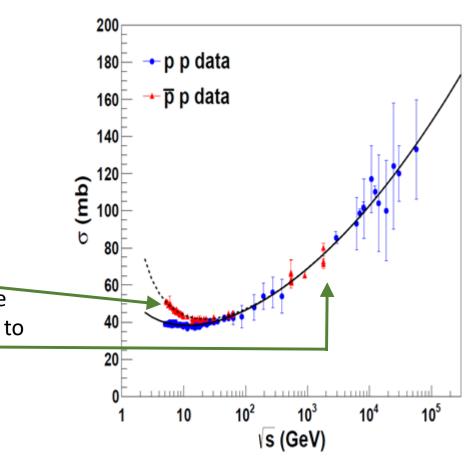
The Odderon


Regge Theory: <u>Barone&Pedrazzi</u>; <u>Collins</u>

At high energies, the poles in the complex angular momentum plane contribute to the scattering amplitude as $A_j(s,t) \sim (s/s_0)^{\alpha_j(t)}$

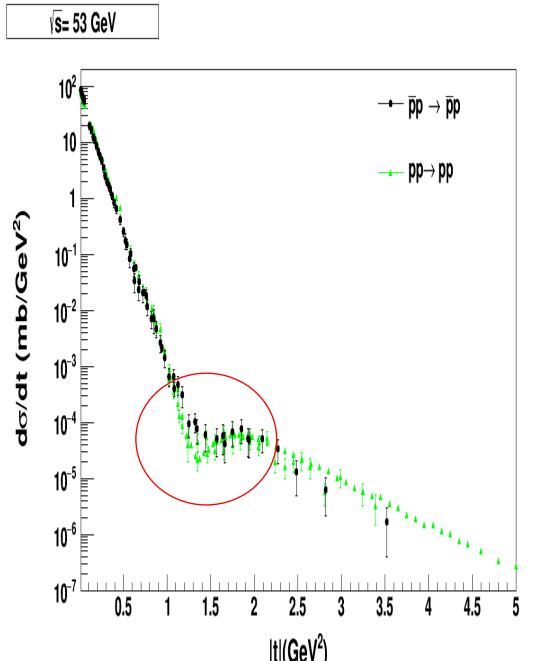

- Regge Trajectory: $\alpha_j(t) = \alpha_j(0) + \alpha'_j t$; $s_0 = 1 \text{GeV}^2$
- Optical Theorem: $\sigma_{tot} = \frac{1}{s} \operatorname{Im}(A(s,t=0)) \rightarrow \sigma_{tot} \sim (s/s_0)^{\alpha_j(0)-1}$
- ρ, ω, f Regge Trajectories: $\alpha(0) \approx 0.5 \rightarrow \sigma_{tot} \sim (s/s_0)^{-0.5}$
- A trajectory with $\alpha(0) = 1 + \varepsilon$ ($\varepsilon > 0$) is needed to explain the rise of the total cross section \rightarrow **Pomeron trajectory**, with C=+1 (contributes equally to pp and $p\bar{p}$ scattering).
- A trajectory with with $\alpha(0) \approx 1$ with C=-1 is also possible \rightarrow Odderon (<u>Lukaszuk&Nicolescu</u>, 1973) (contributes oppositely to pp and $p\bar{p}$ scattering).

Non-perturbative QCD: /hep-

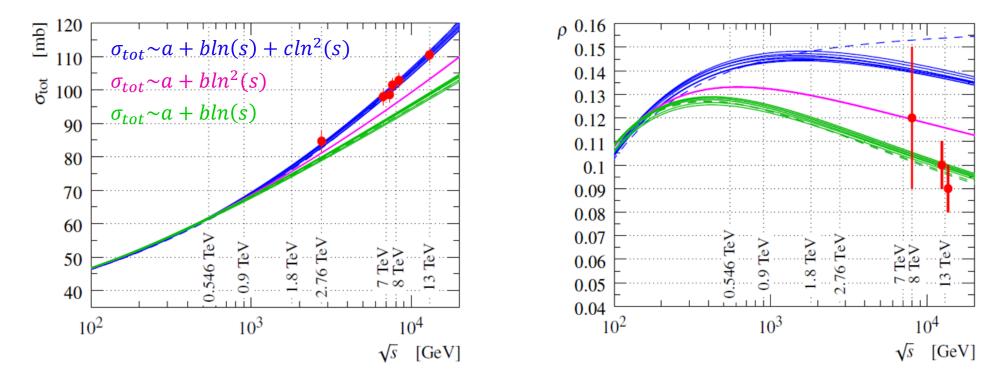

<u>/hep-ph/0306137.pdf</u>

Pomeron = t-channel exchange of a colorless 2gluon bound state (at leading order).

Odderon = t-channel exchange of a colorless 3gluon bound state (at leading order). It is easier to make colorless 2-gluon states than colorless 3-gluon states


Observables for Odderon effects

 $d\sigma$


At high energies:

$$\frac{d\sigma_{pp}}{dt} = |A_P(s,t) + A_O(s,t)|^2$$
$$\frac{d\sigma_{p\bar{p}}}{dt} = |A_P(s,t) - A_O(s,t)|^2$$

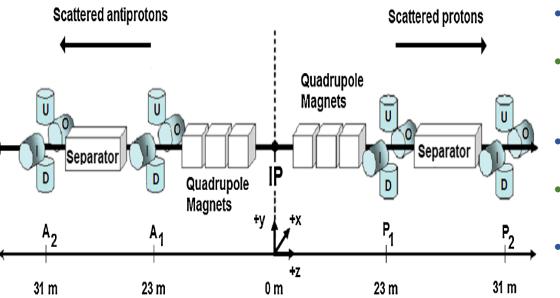
- A_P is mostly imaginary at low values of t, dominating σ_{tot} over A_O which is mostly real.
- Differences in pp and $p\bar{p}$ elastic $\frac{d\sigma}{dt}$ could become observable when A_P is small \rightarrow around the diffraction minimum.
- Some differences in pp and $p\bar{p}$ elastic $\frac{d\sigma}{dt}$, at 3σ level, have been observed at $\sqrt{s} = 53$ GeV (<u>Breakstone et al, 1985</u>). Given the low CM energy, still there are non-negligible contributions from meson Regge trajectories, so any conclusion about existence of the Odderon cannot be made.
- The evolution of ρ and σ_{tot} with \sqrt{s} , $\rho = \frac{Re\{A(s,t=0)\}}{Im\{A(s,t=0)\}}$, is also useful to determine Odderon effects (TOTEM Collaboration, 2019).


Evolution of ρ and σ_{tot} with energy

- With a high β optics (β = 2.5 km) at $\sqrt{s} = 13 TeV$, TOTEM reached very low |t| values (|t|~8x10⁻⁴ GeV²) that allowed a precise measurement of ρ : $\rho = 0.09 \pm 0.01$.
- None of the 256 Pomeron-only models studied by the <u>COMPETE Collaboration</u>, nor <u>Durham</u>, nor <u>Block-Halzen</u> describe simultaneously the ensemble of σ_{tot} and ρ data measured by the TOTEM experiment.
- Additional C=-1 amplitude is needed to explain the evolution of σ_{tot} and ρ with \sqrt{s} , with a significance of 3.4 4.6 σ for the range of models.

$pp - p\overline{p}$ elastic scattering at TeV energies

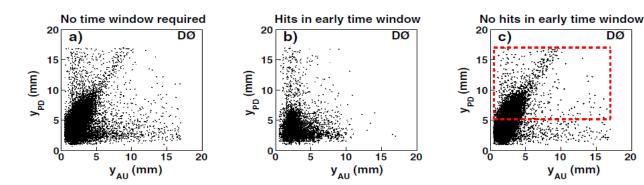
General structure of elastic $\frac{d\sigma}{dt}$:

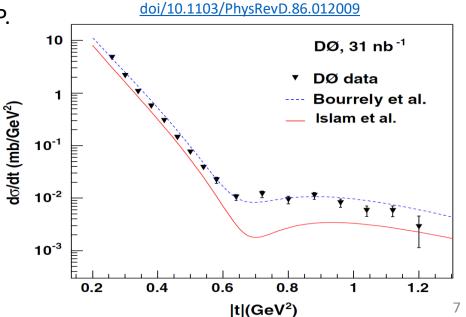

$$t = -4p^2 \sin^2\left(\frac{\theta}{2}\right) \approx -p^2 \theta^2$$

• Very small scattering angles have to be reached:

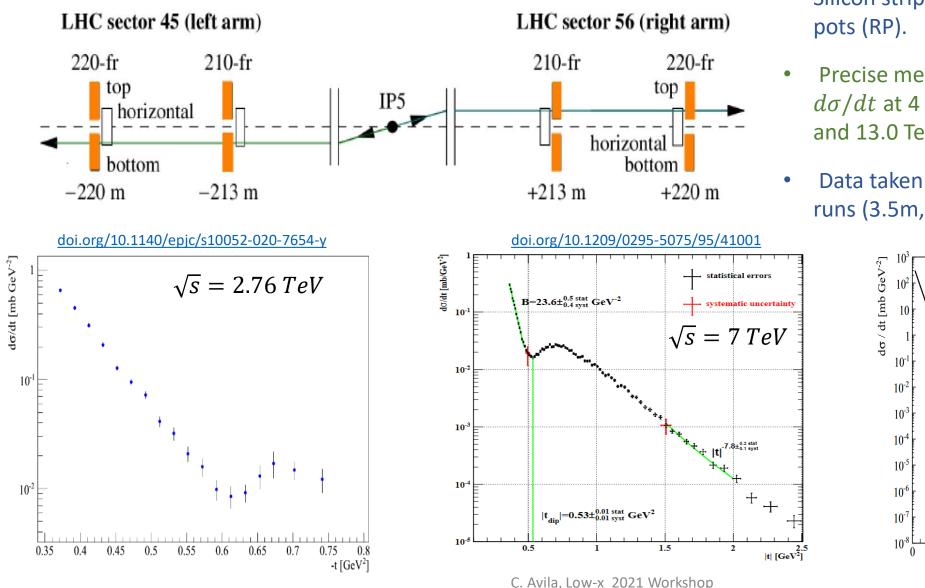
\sqrt{s} (TeV)	$\theta_{interf.}(\mu rad)$
1.96	~ 16
13.0	~ 2

- Need to locate detectors as far as possible to the interaction point and as close as possible to the particle beam axis → Use Roman pots & special high β accelerator optics.
- Measured coordinates of scattered protons (or antiprotons) with respect to beam axis to reconstruct scattering angle and t (precise understanding of particle transport between IP and roman pots is crucial).
- Measure number of elastic pp ($p\bar{p}$) events as function of t, correcting for acceptance and efficiencies, and normalize to integrated luminosity or to a luminosityindependent σ_{tot} measurement to obtain $d\sigma/dt$.

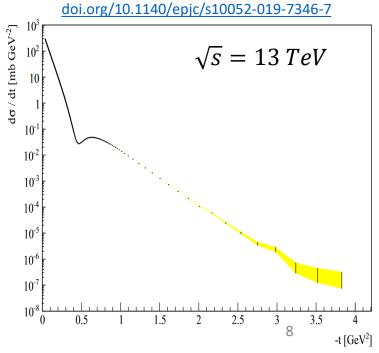

Measurement of $p\overline{p}$ elastic $d\sigma/dt$ by D0 experiment



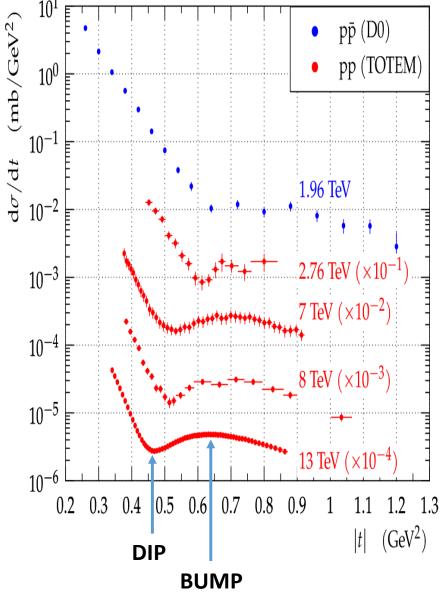
- Scintillating fiber detectors inside Roman pots (RP).
- Use vertical RP's for measurement and horizontal RP's for alignment.
- Integrated luminosity recorded = 31 nb⁻¹
- Data taken with a Tevatron injection lattice ($\beta^* = 1.6 m$)
 - |t| range covered: 0.26<|t|<|1.2| GeV/c².



- Estimate backgrounds from data with timing consistent with beam halo.
- Reconstruct θ from detector coordinates and beam transport matrices.



Measurements of pp elastic $d\sigma/dt$ by TOTEM experiment

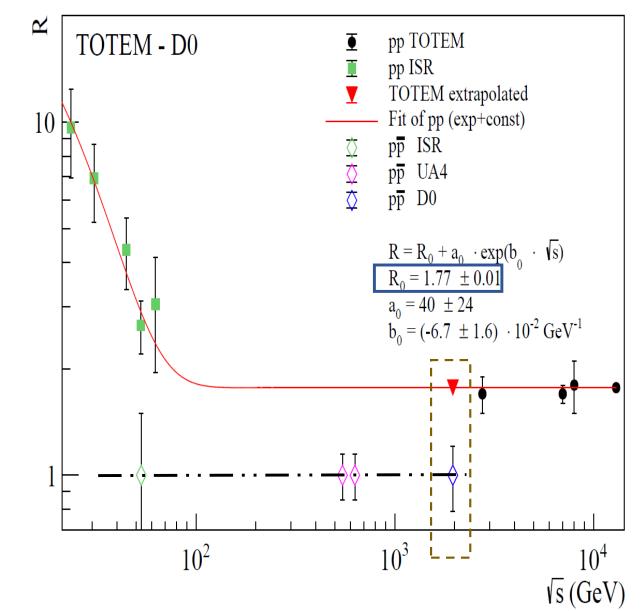

- Silicon strip detectors inside Roman pots (RP).
- Precise measurements of pp elastic $d\sigma/dt$ at 4 CM energies: 2.76, 7.0, 8.0 and 13.0 TeV.
- Data taken in different high β^* optics runs (3.5m, 11m, 90m, 2500 m).

Comparison of pp and $p\overline{p}$ elastic $d\sigma/dt$ at TeV energies.

- TOTEM *dσ/dt* data shows a diffractive mínimum (dip) and a second difraction maximum (bump), both moving towards lower |t| values as energy increases.
- D0 $d\sigma/dt$ data has an inflection point at $|t| \approx 0.65$ with no clear diffraction local minimum.

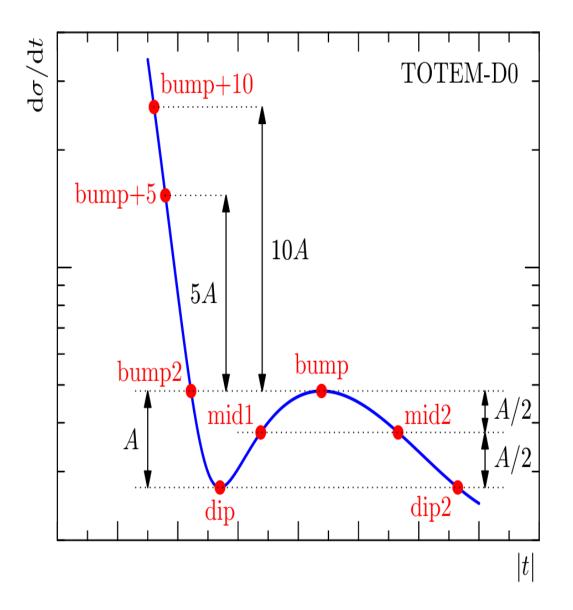
To perform a quantitative comparison between pp and $p\overline{p}$ cross sections, a direct extrapolation of TOTEM $\frac{d\sigma}{dt}$ data to 1.96 TeV is executed, as it is explained in the following slides.

Bump-over-dip ratio

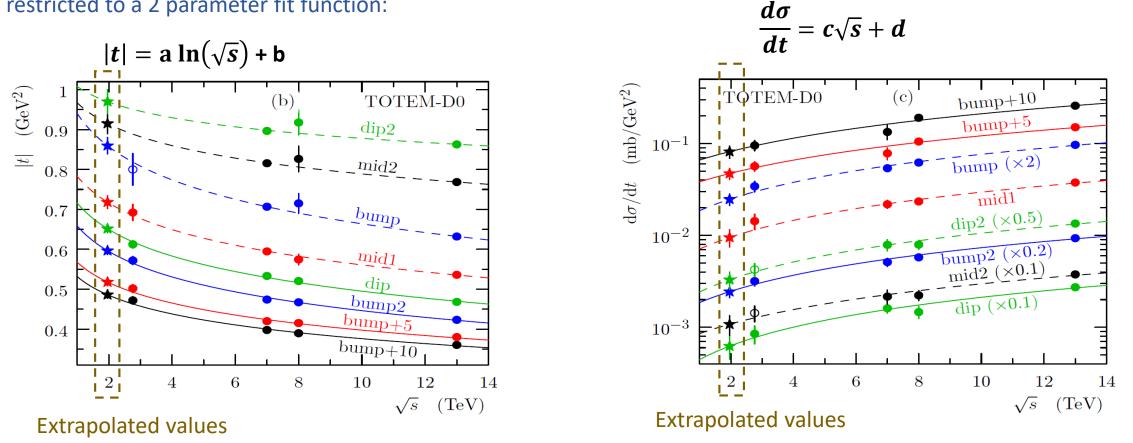

One simple way to quantify differences in pp and $p\bar{p}$ around the dip is by measuring the ratio:

$$R = \frac{\frac{d\sigma}{dt}\Big|_{t=t_bump}}{\frac{d\sigma}{dt}\Big|_{t=t_dip}}$$

• For pp collisions R decreases as a function of \sqrt{s} up to about 100 GeV and then seems to flatten out.

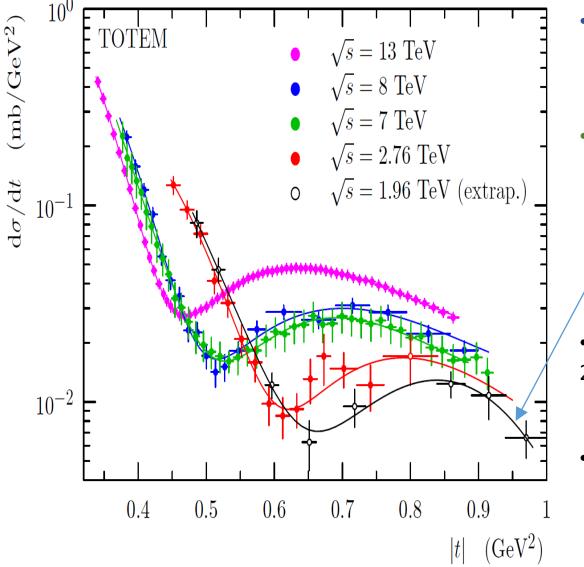

For D0 $d\sigma/dt$, no bump/dip is observed within uncertainties \rightarrow R = 1.0 ± 0.2, similar behavior is observed for lower energy $p\bar{p}$ data. For uncertainty, compute largest R in the neighborhood of the dip/bump locations expected for pp at 1.96 TeV.

• TOTEM extrapolated R value to $\sqrt{s} = 1.96$ TeV differs by more than 3σ with respect to D0 R value (assuming a flat behavior of R above \sqrt{s} = 100 GeV).


Characteristic points of pp $d\sigma/dt$

- A comparison of pp and $p\bar{p} d\sigma/dt$ is restricted to the range 0.5<|t|<0.96 GeV², where there are data at all 5 TeV energies.
- Define 8 characteristic points of TOTEM $pp \ d\sigma/dt$ data that describe the features around the dip-bump region.
- To avoid any model-dependency in the study, the |t| and $d\sigma/dt$ values of the characteristic points are directly used to determine how they vary as $\sqrt{s} \rightarrow$ data-driven comparison.
- Data bins are merged in case there are 2 adjacent |t| bins with about same $d\sigma/dt$ value.

\sqrt{s} dependency of the pp characteristic points


• TOTEM measurements for $\sqrt{s} = 2.76 TeV$ only reached |t| values up to the bump. With 3 or 4 measured values we are restricted to a 2 parameter fit function: $d\sigma$

- Extrapolations to 1.96 TeV are small: Only 8% of the energy range where the measurements were performed.
- Alternate functions for extrapolating |t| or $d\sigma/dt$ were tried with results well within fit errors.

Open symbols at $\sqrt{s} = 2.76 TeV$ are from definitions of the characteristic points or small extrapolations.

Interpolation of pp characteristic points at \sqrt{s} =1.96 TeV

- The 8 extrapolated $d\sigma/dt$ vs |t| characteristic pp points need to be compared to D0 $p\bar{p}$ data points, which are at different |t| values \rightarrow An interpolation is needed.
- Use an empirical interpolation function ($\chi^2/dof = 0.63$):

$$h(t) = a_1 e^{-(b_1|t|+c_1|t|^2)} + a_2 e^{-(b_2|t|+c_2|t|^2+c_3|t|^3)}$$
Describes $d\sigma/dt$ up to the
dip, then has a steep falloff
Describes the bump
and subsequent falloff

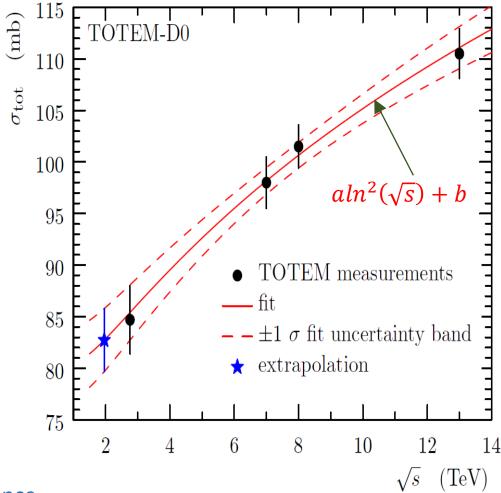
- h(t) fits well all TOTEM data in the dip/bump region at 2.76, 7, 8 and 13 TeV.
- Due to the interpolation, the values of the extrapolated $d\sigma/dt$ at neighboring D0 |t| values are strongly correlated.

Uncertainties of extrapolated pp $d\sigma/dt$

 10^{-1} $(\mathrm{mb}/\mathrm{GeV}^2)$ TOTEM $\sqrt{s} = 1.96 \text{ TeV}$ *pp* extrapolation by TOTEM: The extrapolated pp cross-section uncertainties are determined from MC ensembles: ▲ band center at D0 bins - - band width $(\pm 1 \sigma)$ $\mathrm{d}\sigma/\mathrm{d}t$ The extrapolated cross-sections of the 8 characteristic points are varied within their gaussian uncertainties. Each MC varied distribution is fitted to the 10^{-2} interpolation h(t) function. The gaussian spread obtained at each D0 |t| value corresponds to the uncertainty in $pp \ d\sigma/dt$. 0.50.60.70.80.9

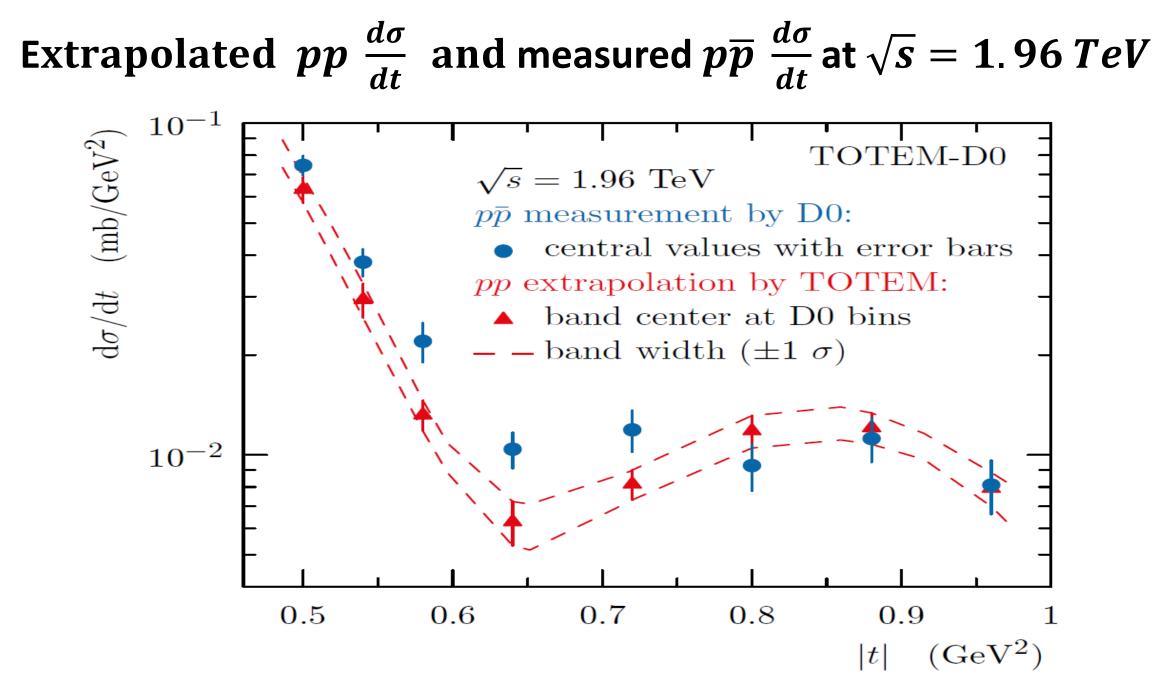
 (GeV^2)

Normalization of $d\sigma/dt$


- We want a common normalization to make a direct $d\sigma/dt$ comparison, so we scale the TOTEM $d\sigma/dt(t = 0)$ (optical point, OP) to agree with D0.
 - → D0 $d\sigma/dt$, before the dip, is fitted to $Ae^{-B|t|}$ → A=341±49 mb/GeV²
 - > A small extrapolation of the TOTEM σ_{tot} data to 1.96 TeV is performed
 - > The optical theorem is then used to get $d\sigma/dt(t = 0)$ (using $\rho = 0.145$):

$$\sigma_{tot}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \left(\frac{d\sigma}{dt}\right)_{t=0} \implies \left(\frac{d\sigma}{dt}\right)_{t=0} = 357\pm26 \text{ mb/GeV}^2$$

Then, the extrapolated $pp d\sigma/dt$ is normalized by a factor of 0.954±0.071


OP's are expected to be equal for C-even only exchanges. The largest difference by theoretical Odderon models (2.9%) is taken as a systematic uncertainty.

Uncertainties due to differences in ρ_{pp} and $\rho_{p\bar{p}}$, departures from pure exponential slopes at small t, and effects of subdominant Regge exchanges are negligible.

Extrapolated $pp \sigma_{tot}$ at $\sqrt{s} = 1.96 TeV$:

 $\sigma_{tot}^{pp} = 82.7 \pm 3.1 \, mb$

Statistical comparison of extrapolated $pp \frac{d\sigma}{dt}$ to measured $p\overline{p} \frac{d\sigma}{dt}$ at $\sqrt{s} = 1.96 TeV$.

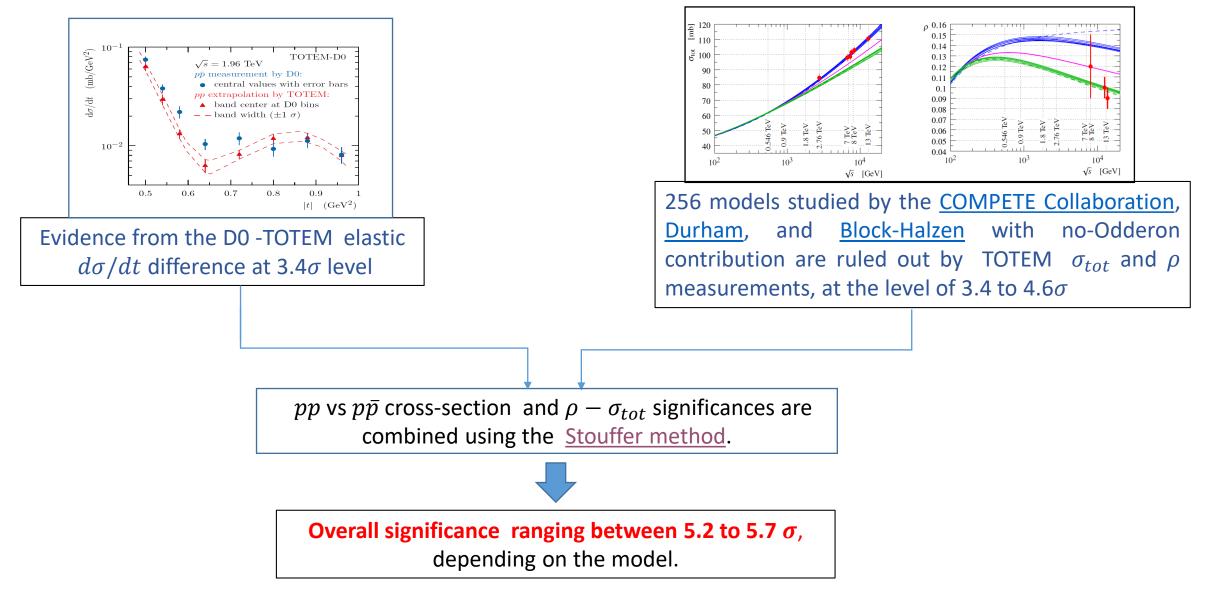
A χ^2 comparison between the scaled TOTEM and D0 $\frac{d\sigma}{dt}$'s is performed as:

$$\chi^{2} = \sum_{i,j} \left\{ (T_{i} - D_{i})C_{i,j}^{-1} (T_{j} - D_{j}) \right\} + \frac{(A - A_{0})^{2}}{\sigma_{A}^{2}} + \frac{(B - B_{0})^{2}}{\sigma_{B}^{2}}$$

Where: $T_i = \left(\frac{d\sigma}{dt}\right)_i^{TOTEM}$; $D_i = \left(\frac{d\sigma}{dt}\right)_i^{D0}$; $C_{i,j} = (i,j)$ element of the cov. matrix.

Two constraints are applied (Therefore 6 d.o.f):

- 1) The OP match between pp and $p\bar{p}$.
- 2) We constraint the pp and $p\bar{p}$ nuclear slopes to their measured values, which agree within statistics (to good approximation $B(pp) = B(p\bar{p})$). This constraint is also consistent with the <u>Cornille-Martin Theorem</u>: the ratio of the pp and $p\bar{p}$ integrated elastic cross sections tends to unity as $s \to \infty$.

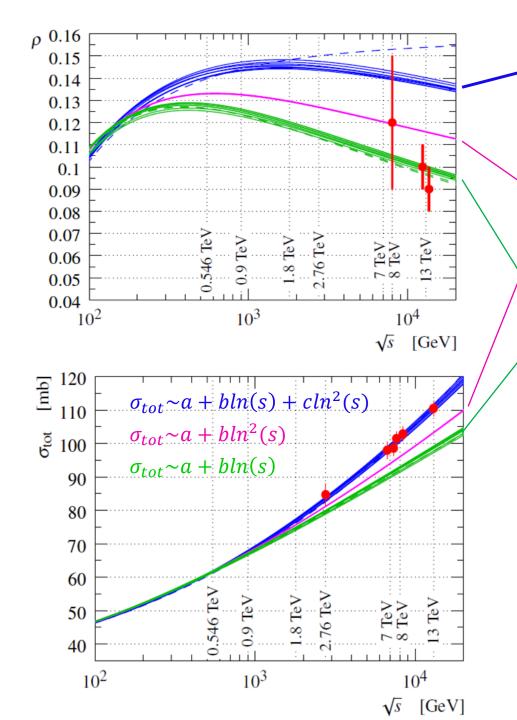

We obtain: χ^2 = 23.64, equivalent to a p-value of 6.1x10⁻⁴ for 6 dof, with a corresponding significance of 3.4 σ

A cross check was done with a modified K-S test, including correlations, we get a consistent p-value with that of the χ^2 test.

We interpret this difference in pp and $p\overline{p}$ elastic $d\sigma/dt$ at TeV energies as evidence of an Odderon amplitude contributing to the scattering process, in addition to the Pomeron amplitude.

Combining evidence of Odderon Exchange from ho, σ_{tot} and elastic $d\sigma/dt$ data

Measurements were obtained with different detectors and in different |t| regions \rightarrow Fully independent


Concluding remarks

- 1. A thorough data-driven comparison between the TOTEM pp (at 2.76, 7, 8, 13 TeV) and the D0 $p\bar{p}$ (at 1.96 TeV) elastic $d\sigma/dt$ was carried out.
- 2. The extrapolated $\frac{d\sigma_{pp}}{dt}$ differs from the measured $\frac{d\sigma_{p\bar{p}}}{dt}$ (at 1.96 TeV) at the level of 3.4 σ , which is interpreted as evidence of a contribution of an Odderon amplitude.
- 3. The evidence of the difference of the elastic $d\sigma/dt$ combined with the evidence from the values of σ_{tot} and ρ at the TeV energies, constitutes the **first experimental observation of the Odderon.**

For more details please see the publication of the present study: <u>https://link.aps.org/doi/10.1103/PhysRevLett.127.062003</u>

Thank you for your attention

BACKUP SLIDES

Excluded at **4.6** σ level with $\rho(13 TeV) = 0.09$

Excluded at **5.7** σ level when combining significance from ρ and from difference in pp and $p\bar{p} \frac{d\sigma}{dt}$.

- Excluded at **4.0** σ level with TOTEM $\rho + \sigma_{tot}$ data.
 - Excluded at 5.3 σ level when combining significance from

TOTEM $\rho + \sigma_{tot}$ data and from difference in pp and $p\bar{p} \frac{d\sigma}{dt}$.

- Excluded at **4.6** σ level with TOTEM $\rho + \sigma_{tot}$ data.
- Excluded at 5.7 σ level when combining significance from

TOTEM $\rho + \sigma_{tot}$ data and from difference in pp and $p\bar{p} \frac{d\sigma}{dt}$.

Durham Model:

- Excluded at **3.4** σ level with TOTEM $\rho + \sigma_{tot}$ data.
- Excluded at 5.2 σ level when combining significance from TOTEM
 - $\rho + \sigma_{tot}$ data and from Durham prediction for D0 $p\bar{p} \frac{d\sigma}{dt}$.

Block-Halzen Model:

- Excluded at **3.9** σ level with TOTEM ρ data.
- Excluded at **5.2** σ level when combining significance from TOTEM ρ data and and from difference in pp and $p\bar{p} \frac{d\sigma}{dt}$.