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Schematic diagram of an ultraperipheral 
collision of two ions. The impact 
parameter, b, is larger than the sum of the 
two radii, RA+RB. 

Depending on the channel WγN    up to 1  TeV can be reached. Hardness of 
the process can be regulated using different final states. 

for moderate virtualities (J/psi), x=10-3 was  reached - much smaller x in the future.

Next 10 -15 years - the only reasonably direct way to probe small x and 
moderate virtualities are different ultraperipheral collisions

I will review comparison of the vector meson theory predictions  and comparison with 
the LHC data  results and some directions for further studies
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Basic guiding features of QCD relevant for diffraction in QCD 

b) Diffraction in DIS  is the leading twist effect - (formal proof Collins 1998) 

a) cross section of a small dipole off a proton/ nucleus interaction is small, proportional to 
to area of dipole  occupied by color,  and to gluon density of target and hence grows 
with decrease of x.  

—> factorization theorem for exclusive meson production (Collins, Frankfurt and MS 1997)

rescatterings of  a small dipole off several nucleons are not suppressed by 
 power of   r2tr

�(qq̄T ) =
⇡2

3
r2trxgT (x,Q

2 = �/r2t )↵s(Q
2)

qualitative difference from eikonal:  n-th rescaattering is suppressed by Q2n

theory of leading twist parton shadowing (Frankfurt, Guzey, MS) 
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Fundamental feature of QCD:     ratio
�inel diff

�el

is small and decreasing with energy for soft interactions (pp)

large (> 1)  (                          ) and increasing with  
energy for small dipoles   interactions (DIS)

/ Q2/Q2
0
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Fluctuations of overall strength of high energy NN interaction

High energy projectile stays in a  frozen configuration distances lcoh =cΔt

�t ⇠ 1/�E ⇠ 2ph
m2

int �m2
h

At LHC for pp                                         lcoh ~ 107 fm>> 2RA>> 2rNm2
int �m2

h ⇠ 1GeV2

coherence up to m2
int ⇠ 106GeV2

Hence system of quarks and gluons passes through the nucleus 
interacting essentially with the same strength but changes from 
one event to another different strength
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Space - time picture of high energy pA collisions 

For γN (ultraperipheral collisions in pA & AA) lcoh ~ 105 fm



Parton structure of  photon - Color fluctuations in γA collisions

Photon is a multi scale state:  

Equation (1) can be rewritten in terms of the integral over � ⌘ �qq̄(W,dt,mq) (as an approximation,
we neglect the di↵erence between the dipole cross section for the light and the charm quarks):

��p(W ) =

Z
d��P dipole

� (�) , (7)

where the distribution over cross sections P�(�) is:

P dipole
� (�) =

����
d2dt

d�qq̄(W,dt,mq = 300 MeV)

����
X

q

e2q | �,T (z, dt,mq)|2 . (8)

Figure 1 shows the resulting distribution P dipole
� (�) for mq = 250 MeV (red solid curve) and mq = 300

MeV (blue solid curve). Note that since for the dipole sizes dt < 1.5 fm, the dipole cross section does not
exceed 42 mb, the resulting distribution P�(�) (8) has suport only for 0  �  42 mb.

The dipole model prediction for P�(�) can be compared to the result of an approach explicitly taking
into account cross section fluctuations in the ⇢ meson [4]. Taking the sum of the ⇢, ! and � meson
contributions, the resulting distribution reads:

P(⇢+!+�)/�(�) =
11

9

✓
e

f⇢

◆2

P (�) , (9)

where P (�) is taken from [4]; its form is motivated by P⇡(�) for the pion and is constrained to describe
the HERA data on ⇢ photoproduction on the proton. The coe�cient of 11/9 takes into account the !
and � contributions in the SU(3) approximation.

The resulting P(⇢+!+�)/�(�) is shown in Fig. 1 as a green dot-dashed curve. Note that P⇢/�(�) has
the wide support all the way up to � = 100 mb (not shown in the figure).
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Figure 1: The distributions P (�) for the photon in the dipole model (red and blue solid curves) and in
the cross section fluctuation approach (the green dot-dashed curve) at W = 100 GeV.
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qq-

P�(�) / 1/� for� ⌧ �(⇡N) P�(�) / P⇡(�) for� > �(⇡N)

Probability, Pγ(σ) for a photon to interact with nucleon with cross section  σ, gets 
contribution from point - like configurations and soft configurations (vector 
meson (VM) like) - color fluctuations (CF).  Unique opportunity to compare soft and 
hard interactions
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A A A A A A

(a) (b) (c)

γ ρ γ ρ γ ρ

N N N
N

N N
N

ρ, qq̄ ρ, qq̄ ρ, qq̄

only ρ= Glauber + vector dominance

ρ + ρ’ +q\bar q,…= Gribov -Glauber   + vector dominance 

Soft diffraction - ρ-meson production

 for  γ-ρ coupling
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Need to model fluctuations of the strength of interaction, P(σ)
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calculation and interpretation of coherent and incoherent (quasi-elastic) cross sections of

hadron–nucleus and photon–nucleus scattering at high energies in the Gribov–Glauber

framework.

Applying the notion of cross section fluctuations to the � ! ⇢ transition, one

readily obtains the cross section of coherent ⇢ photoproduction on nuclei [248]

��A!⇢A =

✓
e

f⇢

◆2 Z
d

2
b

����
Z

d�P⇢(�)
⇣
1 � e

� 1
2�TA(b)

⌘����
2

, (195)

where f
2
⇢ /(4⇡) = 2.01 ± 0.1 is determined from the ⇢ ! e

+
e

� decay [250]; P⇢(�)

is the distribution extensively discussed in Sec. 6, see Fig. 32. Equation (195) has

a clear physics interpretation: long before the target, the photon fluctuates into a

coherent superposition of eigenstates of the scattering operator; each state interacts

with the nucleus according to the Gribov–Glauber approach; the result is summed

over all possible fluctuations with the probability distribution P⇢(�) corresponding to

photoproduction of ⇢ in the final state. Since fluctuations corresponding to di↵erent

values of � are present in the � � ⇢ transition, Eq. (195) naturally takes into account

the inelastic di↵ractive intermediate states leading to the inelastic (Gribov) shadowing

correction.

In the absence of cross section fluctuations, one obtains the standard Glauber model

expression for the cross section of coherent ⇢ photoproduction on nuclei,

��A!⇢A =

✓
e

f⇢

◆2 Z
d

2
b

⇣
1 � e

� 1
2�⇢NTA(b)

⌘2

, (196)

where �⇢N is the total ⇢ meson-nucleon cross section. In this case, nuclear shadowing

is determined by multiple elastic rescattering with the �⇢N cross section, which leads to

the standard Glauber nuclear shadowing correction.

In the incoherent case, using the completeness (closure) of the nuclear final states

A
0, one obtains the following expression for the cross section of incoherent (quasi-elastic)

⇢ photoproduction on nuclei [311]

��A!⇢A0 =

✓
e

f⇢

◆2 Z
d

2
bTA(b)

✓Z
d�P⇢(�)

�p
16⇡B

exp


��

in

2
TA(b)

�◆2

, (197)

where B is the slope of the t dependence of the �p ! ⇢p cross section; �
in = � � �

el

with �
el = �

2
/(16⇡B), where �

in and �el are the inelastic and elastic cross sections,

respectively. Neglecting hadronic fluctuations of the photon, i.e., replacing P⇢(�) by the

�-function in Eq. (197), one obtains the Glauber model expression for ��A!⇢A0 ,

��A!⇢A0 =

✓
e

f⇢

◆2
�

2
⇢N

16⇡B

Z
d

2
bTA(b)e��inTA(b) = ��p!⇢p

Z
d

2
bTA(b)e��in

⇢NTA(b)
, (198)

where �
in
⇢N is the inelastic ⇢ meson-nucleon cross section.

Equations (197) and (198) have a clear physical meaning and interpretation: elastic

scattering of states |�i (elastic photoproductuon of ⇢ mesons) takes place on any of A

nucleons of the target, whose distribution in the transverse plane is given by TA(b); these

states further interact with the rest of target nucleons, which leads to the attenuation
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Figure 47. The cross section of coherent ⇢ photoproduction in Pb-Pb UPCs atp
sNN = 2.76 TeV as a function of the rapidity y: predictions of the Gribov–Glauber

model (red solid curves) and the Glauber model (blue dashed and green dot-dashed
curves) are compared to the ALICE data [313]. The shaded band gives the theoretical
uncertainty due to modeling of the P⇢(�) distribution.

parameter !
⇢
� in Eqs. (148) and (151) due to the variation of the parameter � in Eq. (145)

in the interval � = 0.25 � 0.35.

In contrast, the mVMD-GM (blue dashed curve) and the VMD-GM (green

dot-dashed curve) calculations are based on Eq. (196), which includes only

elastic intermediate states in the calculation of nuclear shadowing (Glauber model)

and significantly overestimate the data (the calculations are based on di↵erent

parametrizations of the d��p!⇢p(t = 0)/dt on the proton, see Ref. [248]).

Note also that in all these calculations, one neglects a small additional e↵ect due to

the leading twist shadowing for configurations with small �  10 mb, see Sec. 8, which

would lead to a small decrease of d��A!⇢A/dy.

Figure 48 presents the energy dependence of the cross section of coherent ⇢

photoproduction in Pb-Pb UPCs at y = 0. Theoretical predictions of the Gribov–

Glauber model (red solid curve with the shaded band) and STARlight Monte Carlo

(black dot-dashed curve) are compared to the scaled STAR data at
p

sNN = 200

GeV [314] and the ALICE data at
p

sNN = 2.76 TeV [313] and
p

sNN = 5.02 TeV [315].

One can see from the figure that the approach based on the Gribov–Glauber model of

nuclear shadowing describes the normalization and the energy dependence of the cross

section very well.

The cross section of coherent ρ 
photoproduction in Pb-Pb UPCs at 
√sNN = 2.76 TeV as a function of the 
rapidity y: predictions of the 
Gribov–Glauber model (red solid 
curves) and the Glauber model (blue 
dashed and green dot-dashed curves) 
are compared to the ALICE 
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Figure 48. The cross section of coherent ⇢ photoproduction in Pb-Pb UPCs as a
function of WNN =

p
sNN at y = 0. Predictions of the Gribov–Glauber model (red

solid curve with the shaded band) and STARlight Monte Carlo (black dot-dashed
curve) are compared to the scaled STAR data at

p
sNN = 200 GeV [314] and the

ALICE data at
p

sNN = 2.76 TeV [313] and
p

sNN = 5.02 TeV [315].

In contrast, the models for the photon–nucleus interaction implemented in the

STARlight Monte Carlo [316], which is often used in processing and analysis of UPC

data, tends to underestimate the cross section at LHC energies. This is the result of

the assumption that the t dependence of d��A!⇢A/dt is given by the nuclear form factor

squared and identification of the �
in
⇢A inelastic nuclear cross section with the total one,

see detailed discussion in [311].

Finally, predictions for the cross section of incoherent ⇢ photoproduction in Pb-Pb

UPCs as a function of the collision energy at y = 0 are shown in Fig. 49. As in Fig. 48,

the result of the Gribov–Glauber model is contrasted with the STARlight prediction.

As one can see from the figure, the STARlight predictions exceed several fold those of

the Gribov–Glauber model. This is the result of the STARlight framework assumption

that the cross section of the incoherent photoproduction of vector mesons on nuclear

targets is proportional to the ratio of the inelastic ⇢A and ⇢N cross sections. The latter

is in conflict with the Glauber expression for the quasi-elastic �A ! ⇢A
0 cross section.

Figures 47, 48, and 49 clearly demonstrate that it is important to properly take into

account the e↵ects of both elastic and inelastic nuclear shadowing, which dramatically

Coherent  scattering is dominated by smaller photon energy contribution away from 
y=0. Gribov - Glauber and classical mechanics (STARlight)  differ relatively little

Gross difference for incoherent diffraction  
— measurements could  be pushed to higher W.
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solid) and STARlight (black dot-dashed) approaches. The red shaded band shows
the range of predictions due to the inclusion of both elastic and nucleon-dissociative
photoproduction on target nucleons.

suppress the cross sections of light vector meson photoproduction on heavy nuclei.

It is also instructive to compare the magnitudes of nuclear suppression in the case

of coherent ⇢ and J/ photoproduction on heavy nuclei. It can be quantified by the

factor of S
2
Pb(W ) [compare to Eq. (184)]

S
2
Pb(W ) =

��A!⇢A

�
IA
�A!⇢A

, (200)

where �IA
�A!⇢A is the cross section calculated in the impulse approximation (IA),

�
IA
�A!⇢A =

✓
e

f⇢

◆2
�

2
⇢N

4

Z
d

2
b[TA(b)]2 . (201)

Figure 50 shows S
2
Pb(W ) as a function of W for coherent photoproduction of ⇢

on the heavy nucleus of lead (Pb). The uncertainty band corresponds to the variation
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Figure 51. The ratio of the nuclear profile functions squared (202) with and without
cross section fluctuations (left) and the probability of inelastic interactions Pinel (203)
(right) as a function of |b| at W = 100 GeV.

Fig. 51 presenting the probability of inelastic interactions Pinel,

P
Fluct.
inel (b) = 1 �

Z
d�P⇢(�) (1 � �A(b, �))2

,

P
Glauber
inel (b) = 1 � (1 � �A(b, �⇢N))2

, (203)

as a function of b. Here �A(b, �) = 1 � exp[��TA(b)/2] is the nuclear profile function

(scattering amplitude in impact parameter space).

This figure quantifies the e↵ect of inelastic nuclear shadowing on the onset of the

black disk limit in coherent photoproduction of ⇢ on heavy nuclei of Pb.

Note that the elastic cross section is much more sensitive to deviations from black

disk regime than the inelastic one.

10. Soft di↵raction in hadron–nucleus and photon–nucleus collisions and

related phenomena

The presence of cross section fluctuations in energetic hadrons and photons that we

introduced and discussed in Sec. 6 leads to a number of characteristic e↵ects in soft

di↵raction on nuclei.

10.1. Coherent di↵ractive dissociation o↵ nuclei

The classic application of the Good–Walker formalism deals with di↵raction of high-

energy projectiles on nuclear targets [3]. Considering di↵ractive dissociation of an

incoming hadron in the state |hi into a complete set of states |ni, the cross section

of coherent di↵ractive dissociation on a nuclear target can be written in the following

form,

�
hA
di↵ =

Z
d

2
b

✓ Z
d�Ph(�)

X

n

|hh|F (�, b)|ni|2 �
⇣ Z

d�Ph(�)|hh|F (�, b)|hi|
⌘2

◆
, (204)

The ratio of the nuclear profile functions squared with and without cross section fluctuations 
(left) and the probability of inelastic interactions as a function of |b| at W = 100 GeV. From 
comparison a) and b) - diffraction is much more sensitive to onset  of black disk limit 
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incoming hadron in the state |hi into a complete set of states |ni, the cross section
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P=1 = black limit
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◉ exclusive production:  γ +p (A)→ J/ψ +p (A)  

most popular now

γ +p (A)→ J/ψ + Y  at t=0 ◉

γ +p (A)→ J/ψ(large t) + rapidity gap  + Y 

◉

◉

γ +p (A)→ J/ψ(xF< 0.8) + X 

Issues: gluon pdfs and gpd’s, gluon shadowing)

gluon shadowing

BFKL at -t > 1 GeV2

QCD factorization  for fragmentation of nucleon, multinucleon 
inelastic interactions, small x gluon densities in p &A

color fluctuations in nucleons and nuclei; 

quasielastic

for p —- neutrons in proton fragmentation region, ZDC signal forA decay

Issues:

Issues:

Hard  diffraction - J/ψ meson production



Combining Gribov theory  of shadowing and pQCD factorization theorem for 
diffraction in DIS allows to calculate LT shadowing  for all parton densities  (FS98) 
(instead of calculating F2A only)

 Theoretical expectations for shadowing in the  LT limit

Theorem:   In  the low thickness limit the leading twist nuclear shadowing 
is unambiguously expressed through the nucleon diffractive  parton 
densities                         :

 
  

2
Im   −  Re

22
Im  + Re                                         

2

HH

j j

p     p        p      p

γ∗ γ∗HH
γ∗ γ∗

j j

Α Α

PPP P

Hard diffraction 

off parton  "j"

Leading twist contribution

structure function  fj (x,Q2)

to the nuclear shadowing for

N1
N2

A−2

f Dj (
x
xIP

,Q2,xIP, t)
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where y is the rapidity of J/ψ, Nγ/A(Wγp) is the photon flux, and σγA→J/ψA(Wγp) is the photopro-
duction cross section containing all details of the strong photon-nucleus interaction and production
of J/ψ. Note that interference of the two terms in Eq. (1) is sizable only at very small values of
the J/ψ transverse momentum [45] and hence can be safely neglected.

In the laboratory frame (coinciding with centre-of-mass system in our kinematics), the measured
rapidity of J/ψ can be related to the invariant photon-nucleon energy Wγp,

W±
γp =

√

2EAMJ/ψ e
±y/2 , (2)

where EA is the nuclear beam energy and MJ/ψ is the mass of J/ψ. The ambiguity in Wγp for
y ̸= 0 is a reflection of the presence of two terms in Eq. (1), where the first term corresponds to the
right-moving photon source and the plus sign in Eq. (2) and the second term corresponds to the
left-moving photon source and the minus sign in Eq. (2) (provided that y is defined with respect
to the right-moving nucleus emitting the photon).

To avoid inelastic strong ion-ion interaction destroying the coherence condition, the photon
flux in Eq. (1) is calculated as convolution over the impact parameter b⃗ of the flux of quasireal
photons emitted by an ultrarelativistic charged ion Nγ/A(ω, b⃗) [43, 44] with the probability not to

have inelastic strong ion-ion interactions ΓAA(⃗b) = exp(−σNN

∫

d2⃗b1TA(⃗b1)TA(⃗b− b⃗1)):

Nγ/A(Wγp) =

∫

d2⃗bNγ/A(ω, b⃗)ΓAA(⃗b) , (3)

where ω = W 2
γp/(4EA) is the photon energy; σNN is the total nucleon-nucleon cross section;

TA(⃗b) =
∫

dzρA(⃗b, z) is the so-called nuclear optical density, which is calculated using the Woods-
Saxon (two-parameter Fermi model) parametrization of the nuclear density ρA [46]. One should
emphasize that the precise determination of the photon flux using Eq. (3) in a wide range of ω is
essential for the analysis of the present work. The validity of the equivalent photon approximation
and a model [47, 48] generalizing Eq. (3) were successfully tested in electromagnetic dissociation
with neutron emission in Pb-Pb UPCs [49].

The UPC cross section (1) is subject to nuclear modifications, which originate from the photon
flux and the photoproduction cross section and which in general depend on the rapidity y and
the collision energy

√
sNN . To quantify the magnitude of nuclear corrections due to the strong

dynamics encoded in the photoproduction cross section and to separate the two contributions in
Eq. (1), it is convenient to introduce the nuclear suppression factor of SPb(x) by the following
relation, see Refs. [32, 33]:

SPb(x) =

√

σγA→J/ψA(Wγp)

σIA
γA→J/ψA(Wγp)

, (4)

where x = M2
J/ψ/W

2
γp. The denominator in Eq. (4) is the coherent J/ψ photoproduction cross

section in the impulse approximation (IA),

σIA
γA→J/ψA(Wγp) =

dσγp→J/ψp(Wγp, t = 0)

dt

∫ ∞

|tmin|

dt|FA(t)|2 , (5)

3

Coherent J/ψ  production - update (Guzey, Kryshen, Zhalov, MS 2020)

= gA(x, μ)/gp(x, μ)

where FA(t) is the nuclear elastic form factor and |tmin| = x2m2
N is the minimal momentum transfer

squared (mN is the nucleon mass). In our work, FA(t) was calculated using the Woods-Saxon
parametrization of the nuclear density [46]. The differential cross section of J/ψ photoproduction
on the proton was parametrized in the form [32], which provides a good description of the available
data at fixed targets [50, 51, 52] and at HERA [53, 54],

dσγp→J/ψp(Wγp, t = 0)

dt
= C0

[

1.0−
(MJ/ψ +mN )2

W 2
γp

]1.5
(

W 2
γp/W

2
0

)δ
, (6)

where C0 = 342±8 nb/GeV2, δ = 0.40±0.01, W0 = 100 GeV. For Wγp ≤ 1 TeV, this parametriza-
tion is consistent with a power-law fit to the W dependence of the γp → J/ψp cross section
extracted from the LHCb data on coherent J/ψ photoproduction in proton-proton UPCs at√
sNN = 7 TeV [55] and

√
sNN = 13 TeV [56]. For higher photon energies Wγp > 1 TeV, the

extracted cross section shows a deviation from a pure power-law extrapolation of the HERA data,
see the discussion in Ref. [56]. However, this region of Wγp is not probed in the Pb-Pb UPCs data
and, hence, does not affect the results of our analysis. Thus, the σIA

γA→J/ψA(Wγp) cross section is
evaluated model-independently using data-driven parameterizations of the nuclear form factor and
the γp → J/ψp differential cross section.

Introducing the UPC cross section in the impulse approximation dσIA
AA→J/ψAA/dy,

dσIA
AA→J/ψAA(

√
sNN , y)

dy
= Nγ/A(W

+
γp)σ

IA
γA→J/ψA(W

+
γp) +Nγ/A(W

−
γp)σ

IA
γA→J/ψA(W

−
γp) , (7)

one can present the square root of the ratio of the UPCs cross sections entering Eqs. (1) and (7)
in the following form

(

dσAA→J/ψAA(
√
sNN , y)/dy

dσIA
AA→J/ψAA(

√
sNN , y)/dy

)1/2

=

(

Nγ/A(W+
γp)S

2
Pb(x+)σIA

γA→J/ψA(W
+
γp) +Nγ/A(W−

γp)S
2
Pb(x−)σIA

γA→J/ψA(W
−
γp)

Nγ/A(W+
γp)σ

IA
γA→J/ψA(W

+
γp) +Nγ/A(W−

γp)σ
IA
γA→J/ψA(W

−
γp)

)1/2

, (8)

where x± = M2
J/ψ/W

±2
γp . Without loss of generality, we will use y ≥ 0 and, hence, W+

γp ≥ W−
γp

and x+ ≤ x−. The advantage of Eq. (8) is that it relates the experimentally measured UPC cross
section ratio on the left-hand side to the nuclear suppression factor of SPb(x) on the right-hand
side. However, it involves S2

Pb(x) at two different values of x and is generally dominated by the x−

contribution since Nγ/A(W−
γp) ≫ Nγ/A(W+

γp), which complicates the separation of the x+ and x−

contributions and reliable extraction of the x+ term corresponding to higher energies. Nevertheless,
the use of all the available data on Pb-Pb UPCs collected during Runs 1 and 2 at the LHC along
with a general parametrization of SPb(x) allows us to extract SPb(x) down to x ≈ 10−5 with a
good precision. Note that the two contributions to the UPC cross section can also be separated
by measuring ion-ion UPCs accompanied by mutual electromagnetic excitation of colliding ions
followed by forward neutron emission [57]. Unfortunately, the statistics of such measurements is
currently too low.
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Theory (Frankfurt, Guzey, MS):  Leading twist theory of nuclear shadowing expressing 
shadowing through LT diffractive PDFs. Alternative - fitting small x data - very limited sample

Predicted correctly shadowing for J/ψ in UPS. Use new LHC 
data to go below y=0, x=mJ/ψ /EN 
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Figure 2: The dσAA→J/ψAA(
√
sNN , y)/dy cross section of coherent J/ψ photoproduction in Pb-Pb UPCs as a

function of |y|: the calculation using Eq. (1) with the nuclear suppression factor of SPb(x) vs. the Run 1 (upper
panel) and Run 2 LHC data (lower panel). The shaded band shows the uncertainty in the UPC cross section due
to the uncertainty of the fit, see the lower panel of Fig. 1.
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Figure 3: SPb(x) and the Rg(x, µ2) = gA(x, µ2)/[AgN (x, µ2)] ratio of the nuclear and nucleon gluon distributions
as functions of x, which were evaluated using the EPPS16 (top) and nCTEQ15 (middle) nPDFs, and predictions
of the leading twist model of nuclear shadowing (bottom) at µ2 = 3 GeV2.

15

S P
b(

x)
x

Run 1 + Run 2
EPPS16-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10-5 10-4 10-3 10-2 10-1
S P

b(
x)

x

Run 1 + Run 2
nCTEQ15-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10-5 10-4 10-3 10-2 10-1

S P
b(

x)

x

Run 1 + Run 2
LTA+CTEQ6L1-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10-5 10-4 10-3 10-2 10-1

Figure 3: SPb(x) and the Rg(x, µ2) = gA(x, µ2)/[AgN (x, µ2)] ratio of the nuclear and nucleon gluon distributions
as functions of x, which were evaluated using the EPPS16 (top) and nCTEQ15 (middle) nPDFs, and predictions
of the leading twist model of nuclear shadowing (bottom) at µ2 = 3 GeV2.
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Our prediction for x=10-4 is  bit below the 
range. Necessary to figure out the reasons 
for discrepancy between LHCb and ALICE. & 
study impact parameter dependence of the 
J/ψ yield

we also predicted increase  of t -dependence 
of coherent J/ψ production as compared to 

impulse approximation 



Alternatively, one can express this in terms of the b-dependent nuclear density gA(x, b)

gA(x, b) = gp(x)

✓
TA(b)

✓
1� �2

�3

◆
+

2�2
�2
3

⇣
1� e��3TA(b)/2

⌘◆

= TA(b)gp(x)

✓✓
1� �2

�3

◆
+

2�2
TA(b)�2

3

⇣
1� e��3TA(b)/2

⌘◆
. (5)

The ratio gA(x, b)/[TA(b)gp(x)] is shown in the right panel of Fig. ??.
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Figure 2: The ratio gA(x, b)/[TA(b)gp(x)] as a function of |~b|.

2

Leading twist gluon shadowing in impact parameter space for 
coherent J/ψ photoproduction on Pb as a function of |⃗b|. 
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The scattering amplitude in impact parameter space ΓA(b) for 
coherent J/ψ photoproduction on Pb as a function of |⃗b|. 

Gluon shadowing changes regime of interaction for x~ 10-3  and 
small b from close to black (probability to interact inelastically) 

  1- (1- Γ)2= 0.77 to gray 1- (1- Γ)2= 0.45

To reach the black limit x~ 10-5 is necessary

x=10-3 (lowest x for EIC)
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why heavy nucleus did not help significantly? 

!17

Where is A1/3 factor?

nucleus is much more delta than proton + gluon shadowing
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where the slope is parametrized as [165]

B2g(x) = B
(0)
2g + 2↵0

g ln(x0/x) , (62)

with x0 = 0.0012, B
(0)
2g = 4.1 (+0.3

�0.5) GeV�2 and ↵
0
g = 0.140 (+0.08

�0.08) GeV�2. One can

rewrite Eq. (60) as

�̂  8⇡B2g(x) ⇡ 40 mb , (63)

for x = 10�3. We note that taking into account relation between the gluon density

and dipole cross section Eq. (25), the relation (63) is equivalent to (59) (with fixed

normalisation).

The above arguments can be extended to nuclei, in which case the saturation scale

obtains the modification due to the mass number A. It is coming from the enhanced

gluon density, which scales roughly like a volume, factor A times reduction factors (a)

the nuclear shadowing factor and (b) smaller transverse density (nuclei are rather dilute

objects) resulting in

Q
2
sA

Q
2
sN

= A
R

2
gN

R
2
A

gA(x, Q
2)

AgN(x, Q2)
. (64)

Taking R
2
gN(x = 10�3) = 0.6 fm2 from analysis of the J/ elastic production, see Sec. 5,

R
2
A = (1.1 fm A

1/3)2, and nuclear shadowing factor of 0.6 for Q
2 = 3 GeV2 and x = 10�3,

we find for the enhancement factor for heavy nuclei (A ⇠ 200):

Q
2
sA

Q
2
sN

= 0.3A1/3 ⇡ 1.75 . (65)

A more accurate estimate avoiding edge e↵ects can be done for the case of scattering

at small impact parameters. In this case we can estimate ratio Q
2
sA/Q

2
sN for small impact

parameters by comparing the product of the matter density at b = 0,

TA(b = 0) =

Z 1

�1
dz⇢A(b = 0, z)A=200 ⇡ 2 fm�2

, (66)

times the shadowing factor SA(x) ⇠ 0.5 with the transverse gluon density in a nucleon:

1

⇡R
2
gN tr

=
1

⇡R
2
gN(2/3)

⇡ 1

2R2
gN

. (67)

Using the same value of R
2
gN as above we find the modification factor for the saturation

scale equal to

Q
2
sA(b = 0)/Q2

sN = TA(b = 0) · SA(x, b = 0) · 2R2
gN = 1.2 , (68)

for heavy nuclei. The di↵erence is mainly due to neglect of the surface e↵ects in modeling

the nuclear density.

In practice the black disk regime is di�cult to reach experimentally, nevertheless

it is instructive to analyze the behavior of the cross sections in this limit. It was first

considered by Gribov [84] for the total cross section for �⇤ - heavy nucleus scattering.

In this limit for virtualities Q
2

< Q
2
sA, where Q

2
sA � ⇤2

QCD, the cross section of dipole–

nucleus scattering does not depend on the dipole size for 1/r2
< Q

2
sA and is equal to
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, (66)

times the shadowing factor SA(x) ⇠ 0.5 with the transverse gluon density in a nucleon:

1

⇡R
2
gN tr

=
1

⇡R
2
gN(2/3)

⇡ 1

2R2
gN

. (67)

Using the same value of R
2
gN as above we find the modification factor for the saturation

scale equal to

Q
2
sA(b = 0)/Q2

sN = TA(b = 0) · SA(x, b = 0) · 2R2
gN = 1.2 , (68)

for heavy nuclei. The di↵erence is mainly due to neglect of the surface e↵ects in modeling

the nuclear density.

In practice the black disk regime is di�cult to reach experimentally, nevertheless

it is instructive to analyze the behavior of the cross sections in this limit. It was first

considered by Gribov [84] for the total cross section for �⇤ - heavy nucleus scattering.

In this limit for virtualities Q
2

< Q
2
sA, where Q

2
sA � ⇤2

QCD, the cross section of dipole–

nucleus scattering does not depend on the dipole size for 1/r2
< Q

2
sA and is equal to

A~200
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γ +p (A)→ J/ψ(xF< 0.8) + X 

Next step - study of other nuclear shadowing effects - testing value  
of   RA(x, μ)  = gA(x, μ)/gp(x, μ) at small x~10-3

γ +p (A)→ leading dijet  (charm) + X 

RA(x=10-3, μ) ~0.6 average number of wounded nucleons ν= 1/RA

enhanced hadron production for yUPC=0

neutrons in ZDC

pushing to x~10-5 using neutron information
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Inelastic diffraction in γ +p (A)→ J/ψ  (leading dijet)  + gap  + Y  

Three regimes

 - color fluctuations in nucleons variance of t=0

�diff/�el = variance of gluon density at given x  
(color fluctuations)

elastic scattering of a  small dipole of 
gluons  &  quarks

-t>0.3 ÷ 0.5 GeV2 next slide 

for smaller t this mechanism is suppressed by factor R = 1�
✓

1

1� t/M2

◆4

Frankfurt et al

0.1 < -t<0.3 ÷ 0.5 GeV2      interplay   of these two mechanisms

◉

◉

◉
M2= 1 GeV2



Perturbative Pomeron: what is  energy dependence cross section  in vacuum channel ?

Problem for the study  - two large parameters ln Q2, and ln 1/x.

DIS - both parameters enter (DGLAP );   BGKL  - only ln 1/x (scattering  of two small dipoles)

BFKL elastic amplitude   f(s)= (s/s0)1+ ω

leading log  ω     ~  0.5 ÷ 0.8 , NLO ~ 0.1, resummation ~0.25

! = a1↵S � a2↵
2
S + ...

Main reason for small values of ω  - energy conservation
Promising direction: Rapidity gaps at large t for 
J/psi production - squeezing from both ends. 
Can be measured in UPC (pA),  
 future:EIC, LHeC.

rapidity gap

fixed x

�20

/P

/P

/P

a simpler process than Mueller and Tung dijet
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The choice of large t ensures several  important simplifications:
✵ the parton ladder mediating quasielastic  scattering  is attached to the  
projectile  via two gluons. 
✵✵ attachment of the ladder to two partons of the target is strongly 
suppressed.  
✵✵✵ small transverse size dqq̄ ⇥ 1/

⇤
�t⇠ 0.15fm forJ/ for� t ⇠ m2

J/ 

d��+p!V+X

dtdx̃
=

=
d��+quark!V+quark

dt


81

16
gp(x̃, t) +

X

i

(qip(x̃, t) + q̄ip(x̃, t))

�

exp(2! ·�Y )
resummation predicts a huge  effect - between ΔY =2 and 
ΔY =4   σ is expected to increase by a factor of  3  !!! /P

ΔY =4 

Δ Y  up to 4 maybe possible at EIC, and  Δ Y  up to 8 at LHC in pA 
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Direct photon 
dijets

x> 10-2

Charm
x~ 10-3

Low transverse 
momentum events

60 mb0 mb

Leading strangeness
x~ 10-3

Min bias

Ultraperipheral collisions at LHC (WγN< 500 GeV)

EIC & LHeC  - Q2 dependence  “2D strengthonometer”   - - decrease of role of 
“fat” configurations, multinucleon interactions due to LT nuclear shadowing

σ

Novel way to study dynamics of γ &γ* interactions

Tuning strength of interaction of configurations in photon 
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Conclusions

UPC already contributed in a unique way into 
studies of QCD eluding J/psi production at very 
small x and off nuclei. 

Fresh look at directions of study of UPC is necessary 
reflecting new theoretical issues as well as  new 
detector capabilities (acceptance, effective lumi) - 14 
years from the Phys.Rep. UPC 2007 study (cited ~500 
times, but not probably read at depth).

UPC - FORERUNNER OF EIC
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Supplementary slides



Hard regime:    γ A→jets + X

1) Direct photon & xA> 0.01, ν=1?

Color charge propagation through matter. 
Color exchanges ? ➠ nucleus excitations, ZDC & very 
forward detectors

2) Direct photon & xA< 0.005  - nuclear shadowing increase of ν

3) Resolved  photon   - increase of  ν with decrease of xγ and xA

W dependence
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Centrality dependence of the forward spectrum in  γ A→h + X 
— connection to modeling cosmic rays  cascades in the atmosphere

ν - number of wounded nucleons



 8

Ultraperipheral minimum bias γΑ collisions at LHC (WγN< 500 GeV)

 Huge fluctuations of the strength of γN  interaction - soft and small dipoles,.. (Leonya 
Frankfurt’s talk) → large fluctuations in the number of wounded nucleons in γA collisions

 0
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P(
ν)

ν

Color Fluctuations
Generalized CF

Glauber
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100

 0  2  4  6  8  10  12  14  16

distribution over the number of wounded 
nucleons in γΑ scattering, W ~ 70 GeV 

Alvioli, Guzey, Zhalov, LF, 
MS - Physs.Lett. in press

Phys.Lett. B767 (2017) 450-457

MS

CFs broaden very significantly distribution over ν.  
“pA ATLAS/CMS like analysis” using energy flow at large rapidities 
 would test both presence of configurations with large σ ~40 mb,
 and weakly interacting configurations.
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Ultraperipheral minimum bias γA at the LHC (WγN < 0.5 TeV)
Huge fluctuations of the number of wounded nucleons, ν,in interactions of  
both small and large dipoles with nuclei
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The probability distributions over the transverse energy in the Generalized
 Color Fluctuations (GCF) model assuming distribution over 
ET  is the same for pA and γΑ collisions for same ν. 

y = ⌃ET / h⌃ET (hN)i
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Using forward detector  for centrality via measurement of “y” advantageous:  
larger rapidity interval - smaller kinematical/ energy conservation correlations. 
For using ΣET   for centrality determination one needs Δy > 4 .


