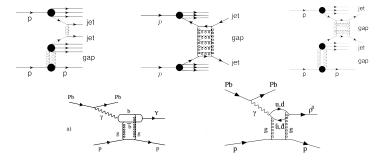
Diffractive results from CMS and TOTEM

Cristian Baldenegro (c.baldenegro@cern.ch) The University of Kansas

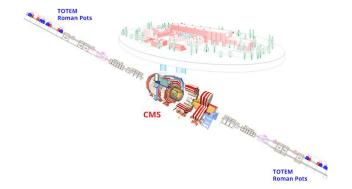
On behalf of the CMS and TOTEM Collaborations

Low-x 2021 Isola d'Elba

September 27 - October 1 2021


DE-SC0019389

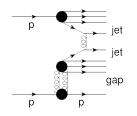
Recent selected results by CMS and CMS-TOTEM in diffraction:


- Single-diffractive dijet production at \sqrt{s} = 8 TeV. CMS-TOTEM, arXiv:2002.12146, EPJC 80, 1164 (2020)
- ▶ Hard color-singlet exchange in dijet events ("jet-gap-jet") at $\sqrt{s} = 13$ TeV CMS-TOTEM, arXiv:2102.06945, PRD 104, 032009 (2021)

• Exclusive Υ production in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. CMS, arXiv:1809.11080,EPJC 79 (2019) 277

Exclusive ρ production in pPb collisions at $\sqrt{s}_{NN} = 5.02$ TeV. CMS, arXiv:1902.01339, EP JC 79 (2019) 702

CMS and TOTEM experiments


CMS:

- General purpose detector at IP5 of the CERN LHC.
- ► Tracking (|η| < 2.5), and hadronic and electromagnetic calorimetry (|η| < 5.2)</p>
- Jets with R = 0.4 reconstructed within $|\eta^{jet}| < 4.7$

TOTEM:

- Measurement of total cross section, elastic scattering, and soft and hard diffractive processes in pp collisions.
- ▶ Roman pots: Forward tracking detectors at ≈ 220m w.r.t. IP5 that measure the protons scattered at small angles w.r.t. the beam.

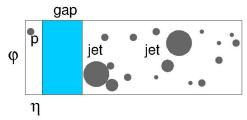
CMS-TOTEM Collaborations, arXiv:2002.12146, EPJC 80, 1164 (2020)

- ▶ Diffractive structure function of the proton in an extended kinematic range. → Poorly-understood part of the proton gluonic component.
- Universality of pomeron: is the color-singlet object exchanged in ep collisions at HERA responsible for diffraction in pp collisions at the LHC?
- Constrain quark-gluon densities of the pomeron.
- Measure evolution of the survival probability with \sqrt{s} .

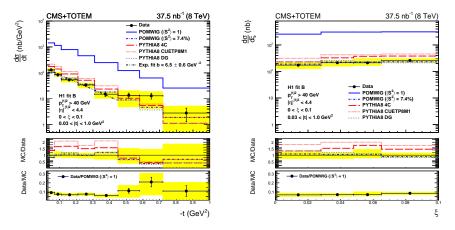
Particle-flow jets with anti- $k_T R = 0.5$.

Two highest p_T jets have $p_T > 40$ GeV in

Jet selection requirements:

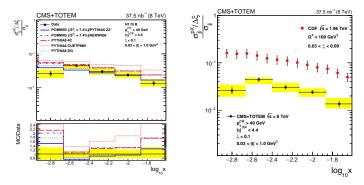

 $|\eta| < 4.4.$

Analysis is based on very low pileup run with $\beta^* = 90$ m optics.


Proton requirements

- At least one intact proton detected in the RPs (either arm).
- ► The fraction of beam energy lost by the proton must be $\xi_{\text{TOTEM}} \equiv \Delta p/p < 0.1 \ (x_{\mathbb{P}} \text{ in HERA language}).$
- The four-momentum transfer square at the proton vertex must be -1 < t < -0.025 GeV², where $t = (p_f p_i)^2$.

No rapidity gap requirement! Signature of diffraction is the intact proton.


Measurement of differential cross sections in |t| and ξ

Comparison w/ MC generators using various treatments of the survival probability. Predictions based on Regge factorization using the pomeron flux and diffractive PDFs from H1 2006 fit B.

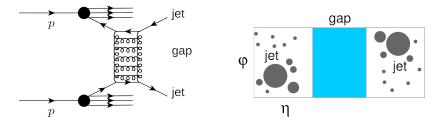
- **POMWIG** with constant survival probability $\langle S^2 \rangle = 7.4\%$ and no correction. Includes \mathbb{P} and \mathbb{R} .
- ▶ PYTHIA8 4C and CUETP8M1 overshoot the data by a factor of \approx 1.5–2. Only \mathbb{P} .
- Dynamical gap, based on matter distribution for MPI in Pp subsystem, describes the data without ad hoc normalization factors. C. Rasmussen, T. Sjöstrand, 10.1007/JHEP02(2016)142, arXiv:1512.05525.

Ratio of single-diffractive dijets to inclusive dijets versus Bjorken-x

Ratio $R = (SD/\Delta\xi)/INC$ versus x, where x is calculated with the jets

$$x^{\pm} \equiv \frac{1}{\sqrt{s}} \sum_{i=1}^{3} E^{jet i} \pm p_{z}^{jet i}$$

Comparison of R with different treatments of hard diffraction:

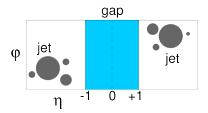

- **POMWIG** prediction with $\langle S^2 \rangle = 7.4\%$.
- PYTHIA8 4C, CUETP8M1 and dynamical gap (DG); no additional survival probability.

R at 8 TeV shows suppression w.r.t. measurement by CDF at 1.96 TeV. Consistent with an evolution of the survival probability with \sqrt{s} .

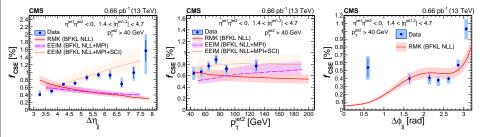
Cristian Baldenegro (KU)

Hard color-singlet exchange in dijet events (''jet-gap-jet'') at $\sqrt{s}=$ 13 TeV

CMS-TOTEM Collaborations, arXiv:2102.06945, PRD 104, 032009 (2021)

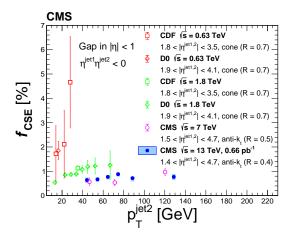

t-channel color-singlet exchange between partons (two-gluon exchange) $\rightarrow \eta$ interval void of particles between jets (pseudorapidity gap)

In the high-energy limit of QCD, process is expected to be described by Balitsky-Fadin-Kuraev-Lipatov pomeron exchange. A. Mueller and W-K. Tang, PLB 284 (1992) 123.

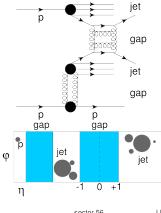

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi dynamics are strongly suppressed in events with pseudorapidity gaps (Sudakov form factor to suppress radiation in the gap).

Analysis based on low-pileup data. Event selection:

- Particle-flow, anti- k_t jets R = 0.4.
- Two highest p_T jets have p_T > 40 GeV each.
- ► Leading two jets satisfy $1.4 < |\eta_{jet}| < 4.7$ and $\eta^{jet1}\eta^{jet2} < 0$ → Favors *t*-channel color-singlet exchange.



Pseudorapidity gap is defined via the multiplicity of charged particles N_{tracks} between the jets. Each charged particle has $p_T > 200$ MeV in $|\eta| < 1$.

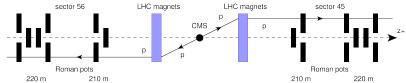


- ▶ Color-singlet exchange represents ≈ 0.6% of the inclusive dijet cross section for the probed phase-space.
- Comparison w/ calculations based on BFKL NLL resummation + LO impact factors:
 - Royon, Marquet, Kepka (RMK) predictions (Phys. Rev. D 83.034036 (2011), arXiv:1012.3849), with survival probability |S|² = 0.1.
 - Ekstedt, Enberg, Ingelman, Motyka (EEIM) predictions (Phys. Lett. B 524:273 and arXiv:1703.10919) with MPI to simulate |S|², also be supplemented with soft-color interactions (SCI).

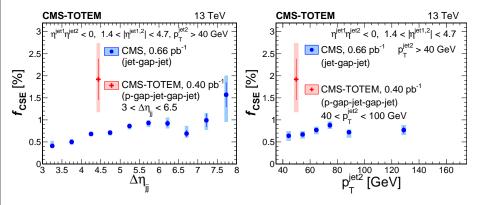
Challenging to describe theoretically all aspects of the measurement simultaneously.

- Measurement of jet-gap-jet events at four different \sqrt{s} in pp̄ and pp collisions at 0.63 TeV, 1.8 TeV, 7 TeV, and 13 TeV (this measurement).
- Generally, f_{CSE} is expected to decrease with increasing \sqrt{s} , due to an increase in spectator parton activity with \sqrt{s}
- **b** Within the uncertainties, f_{CSE} stops decreasing with \sqrt{s} at LHC energies, in contrast to trend observed at lower energies 0.63 TeV \rightarrow 1.8 TeV \rightarrow 7 TeV. Cristian Baldenegro (KU)

Better understand the role of spectator partons in the destruction of the central gap.


Same dijet and central gap definitions as with CMS-only analysis.

Proton requirements:

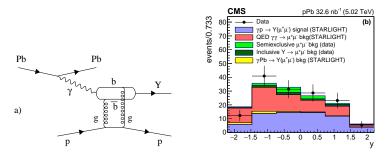

The fraction of beam energy lost by the proton must be $\xi \equiv \Delta p/p < 0.2$.

• 4-momentum transfer at proton vertex

$$-4 < t < -0.025 \text{ GeV}^2$$
, where $t = (p_f - p_i)^2$.

Results on p-gap-jet-gap-jet

 f_{CSE} fraction in p-gap-jet-gap-jet study is 2.91 ± 0.70 (stat) $^{+1.00}_{-1.01}$ (syst) times larger than jet-gap-jet fraction, for similar dijet kinematics.

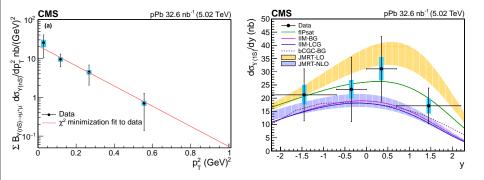

Abundance of events with a central gap is larger in events with intact protons.

Lower spectator parton activity in events with intact protons \rightarrow Better chance of central gap surviving the collision.

 Υ photoproduction from protons in pPb collisions at $\sqrt{s}_{NN} = 5.02$ TeV

CMS, arXiv:1809.11080, EPJC 79 (2019) 277

- **>** Virtual photon splits into color dipole that probes the proton structure $\gamma^* p \to \Upsilon p$
- Photoproduction of quarkonia offers a clean probe of gluon densities of the proton (at LO in pQCD, $\sigma \propto [xg(x, Q^2)]^2$).
- One can probe $xg(x,Q^2)$ at $x = 10^{-4} 10^{-2}$ at $Q^2 \approx m_{\Upsilon}^2 \gg \Lambda_{\rm QCD}^2$.

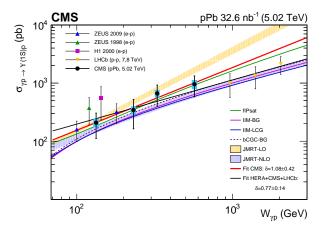


Focus on $\Upsilon \to \mu^+ \mu^-$ channel. Event selection:

- ► Exactly two muon tracks of opposite charge associated to the primary vertex with $p_T^{\mu} > 3.3$ GeV and $0.1 < p_T^{\mu^+\mu^-} < 1$ GeV with $|\eta^{\mu}| < 2.2$. No other tracks with $p_T > 0.1$ GeV.
- No activity in 2.9 $< |\eta| < 5.2$ with E > 5 GeV and no neutrons detected in zero degree calorimeters (ZDCs).

Cristian Baldenegro (KU)

Differential cross section in $p_{T,\Upsilon}^2$ and y of Υ meson

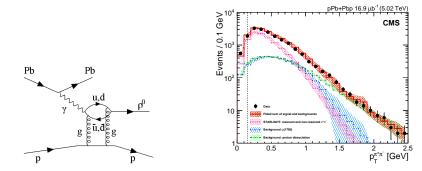


• Measure $d\sigma/p_{T,\Upsilon}^2$, where $p_{T,\Upsilon}^2$ is used a proxy for $t = (p_f - p_i)^2$.

Extract slope of $b = 6 \pm 2.1$ (stat) ± 0.3 (syst) GeV⁻² with $\exp(-bp_T^2)$ fit, in agreement with the value measured by ZEUS of $b = 4.3^{+2.0}_{-1.3}$ (stat) $^{+0.5}_{-0.6}$ (syst) GeV⁻² at lower $W_{\gamma p}$.

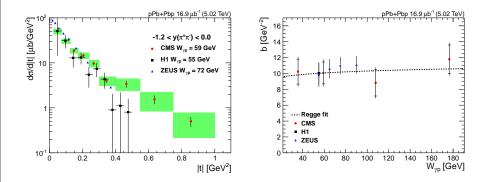
Compared to various predictions based on different treatments of the low-x gluon densities of the proton.

Photoproduction cross section $\sigma_{\gamma p \to \gamma p}$ versus $W_{\gamma p}$


▶ Photon-proton center-of-mass energy $W_{\gamma p}^2 = 2E_p m_{\Upsilon} \exp(\pm y_{\Upsilon})$ calculated in bins of $\langle y_{\Upsilon} \rangle$.

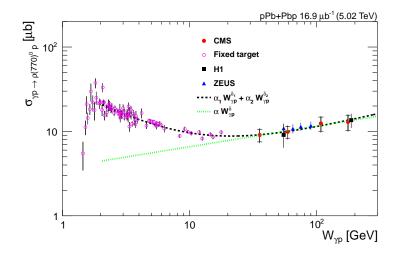
- A fit to the **CMS** data alone of the form $\sigma \propto W_{\gamma p}^{\delta}$ yields $\delta = 1.08 \pm 0.42$, consistent with the value reported by ZEUS of $\delta = 1.2 \pm 0.8$.
- $\sqrt{s_{NN}} = 5.02$ TeV pPb results cover region explored by H1, ZEUS, and LHCb results.

 $ho^{0}($ 770) photoproduction from protons in pPb collisions at $\sqrt{s}_{
m NN}=$ 5.02 TeV


CMS, arXiv:1902.01339, EPJC 79 (2019) 702

Color dipole size of $\rho^0(770)$ meson is expected to be larger than those of other vector mesons \rightarrow possible enhancement of saturation effects.

Focus on $\rho^0(770) \rightarrow \pi^+\pi^-$ channel. Event selection


- Exacly two high-purity tracks associated to primary vertex, $p_T^{\text{leading}} > 0.4$ GeV and $p_T^{\text{subleading}} > 0.2$ GeV in $|\eta| < 2.0$.
- ▶ No activity in forward hadronic 3.0 $< |\eta| <$ 5.2 with E > 3 GeV and no neutron activity in ZDC.

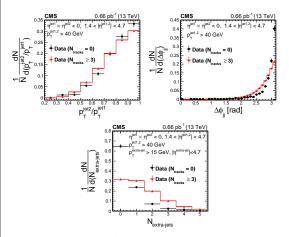
- ► Good agreement of the slope of $|t| \equiv p_{T,\pi^+\pi^-}^2$ between H1, ZEUS, and CMS. Slope extracted from $\exp(bt + ct^2)$ fit.
- Shrinkage of the b-slope with energy (Regge fit):

$$b = b_0 + 2\alpha' \ln(W_{\gamma p}/W_0)^2$$
 (1)

▶ CMS: $\alpha' = 0.28 \pm 0.11$ (stat) ± 0.12 (syst) GeV⁻², consistent with ZEUS-only value $\alpha' = 0.23 \pm 0.15$ (stat) ± 0.11 (syst) GeV⁻²

• Consistent with trend observed with HERA results at similar $W_{\gamma p}$.

Power-law fit to CMS and HERA $W^{\delta}_{\gamma p}$, with $\delta = 0.24 \pm 0.13$ (stat) ± 0.04 (syst).


Unique opportunity to study the phenomenon of diffraction with CMS and TOTEM.

Testing properties and universality of diffractive interactions at different scales of momenta:

- Diffractive dijet production at $\sqrt{s} = 8$ TeV
- Hard color-singlet exchange in dijet events at $\sqrt{s} = 13$ TeV
- ▶ Exclusive ρ and Υ meson production in pPb collisions at $\sqrt{s}_{NN} = 5.02$ TeV
- Stay tuned for further studies!

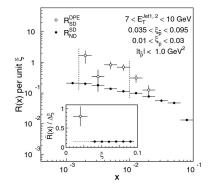
Thanks!

Normalized distributions in:

$$\blacktriangleright p_{\rm T}^{\rm jet2}/p_{\rm T}^{\rm jet1}$$

$$\blacktriangleright \ \Delta \phi_{\rm jj} = |\phi^{\rm jet1} - \phi^{\rm jet2}|$$

Jet multiplicity N_{extra-jets} for jets with p_{T,extra-jet} > 15 GeV.

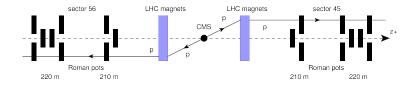

Jet-gap-jet candidates with $N_{\text{tracks}} = 0$ and events dominated by color-exchange dijet events with $N_{\text{tracks}} \ge 3$.

Distributions reflect underlying quasielastic parton-parton scattering process topology.

Predictions to exclusive Υ data

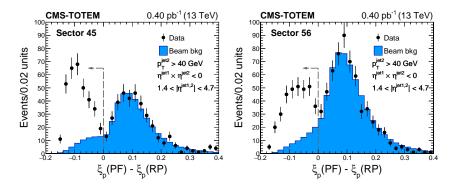
- The JMRT model [10], a pQCD approach that uses standard (collinear) PDFs with a skewness factor to approximate GPDs, including LO and NLO corrections, and a gap survival factor to account for the exclusive production;
- The factorized impact parameter saturation model, fIPsat, with an eikonalized gluon distribution function that uses the colour glass condensate (CGC) formalism to incorporate gluon saturation at low *x* [17] [18];
- the Iancu, Itakura and Munier (IIM) colour dipole formalism [63] with two sets of meson wave functions, boosted Gaussian (BG) and light-cone Gaussian (LCG), which also incorporate saturation effects [15, 16];
- the impact parameter CGC model (bCGC), which takes into account the *t*-dependence of the differential cross section, using the BG wave function **[19**, **64**].

Consistent with other two-rapidity gap topology


CDF studied double-pomeron exchange/single-diffractive dijet event ratios, compared them to single-diffractive/non-diffractive (**PRL85,4215**):

 $\mathcal{R} = (\text{DPE/SD}) / (\text{SD/ND}) = 5.3 \pm 1.9$, different from factor of 1 expected from factorization. Comparison of gap-jet-jet-gap/gap-jet-jet topology.

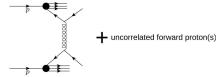
Present CMS-TOTEM result finds a similar effect for a different two-gap topology (proton-gap-jet-gap-jet).


Source	Jet-gap-jet			Proton-gap-jet-gap-jet
	$\Delta \eta_{ m jj}$	$p_{\rm T, jet-2}$	$\Delta \phi_{ m jj}$	i iotoii-gap-jet-gap-jet
Jet energy scale	1.0-5.0	1.5-6.0	0.5-3.0	0.7
Track quality criteria	6.0-8.0	5.4 - 8.0	1.5 - 8.0	8
Charged particle $p_{\rm T}$ threshold	2.0 - 5.8	1.6 - 4.0	1.1 - 5.8	11
Background subtraction method	4.7 - 14.6	2 - 14.6	12.0	28.3
NBD fit parameter	0.8-2.6	0.6 - 1.7	0.1 - 0.6	7
NBD fit interval	_	_		12.0
Calorimeter energy scale	_	_	_	5.0
Horizontal dispersion	_	_	_	6.0
Fiducial selection requirements		_		2.6
Total	6.8-22.0	8.3–14.9	12.0–17.1	33.4

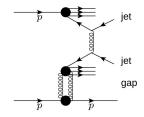
Relative systematic uncertainties in percentage on f_{CSE} . Uncertainty range is representative of the variation found in the jet-gap-jet fraction in bins of the kinematic variables of interest.

- At least one proton on either side.
- Track-impact point cuts (x, y) based on acceptance studies. For vertical RPs, 0 < x < 20mm and 8 < |y| < 30mm, for horizontal RPs, 7 < x < 25mm and |y| < 25mm.</p>
- Proton fractional momentum loss is $\xi \equiv \Delta p/p < 0.2$ and four-momentum transfer square is $0.025 < -t < 4 \text{ GeV}^2$. Based on acceptance studies + validity of optical functions.
- ► To suppress beam bkg contribution (pileup+beam halo), additional cut $\xi_p(PF) \xi_p(RP) < 0$, where $\xi_p(PF) = \frac{\sum_i E_i \pm p_{\mathbf{z},i}}{\sqrt{s}}$ is the proton fractional momentum loss reconstructed with PF candidates of CMS. The \pm is the sign of the intact proton η .

A total of 336 and 341 events in sector 45 and sector 56, respectively, satisfy the above selection requirements + dijet selection requirements.

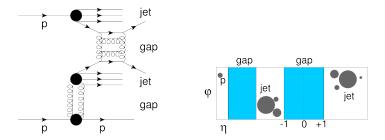

Estimated with event-mixing: inclusive dijet events paired with protons in zero-bias sample.

Requirement $\xi_p(PF) - \xi_p(RP) < 0$ indicated by dashed line. Region $\xi_p(PF) - \xi_p(RP) > 0$ is dominated by beam bkg contributions \rightarrow Used as control region to estimate residual beam bkg in $\xi_p(PF) - \xi_p(RP) < 0$.

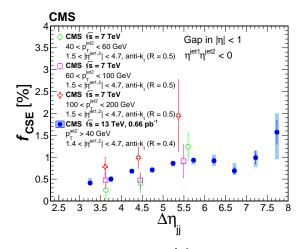

Beam background contributes 18.7 and 21.5% for protons in sector 45 and 56 in $\xi_{P}(PF) - \xi_{P}(RP) < 0$, respectively.

Background contributions to p-gap-jet-gap-jet events

Inclusive dijet production + uncorrelated proton from residual pileup or beam halo activity (estimade from data). Standard diffractive dijet production with no central gap (p-gap-jet-jet topology):



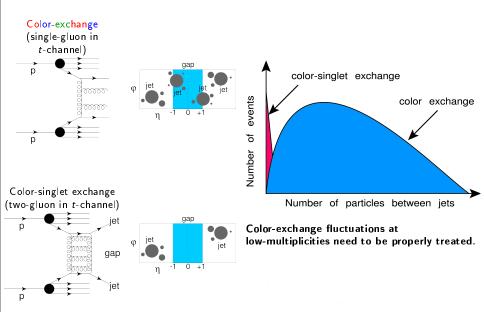
 \rightarrow Fluctuations on particle multiplicity can lead to gaps. Needs to be subtracted (NBD and ES methods).


Soft-parton activity can destroy the central gap between the jets. This is parametrized with a gap survival probability, $|S|^2$, which is difficult to understand theoretically.

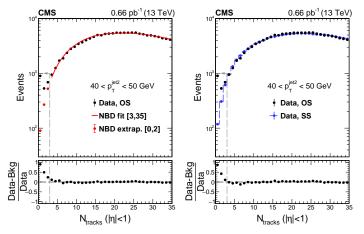
In pp collisions with intact protons, soft-parton activity is largely suppressed \rightarrow Central gap more likely to "survive" (Marquet, Royon, Trzebiński, Žlebčík, Phys.Rev. D 87, 034010 (2013)).

Addressed in study with CMS-TOTEM combined analysis (arXiv:2102.06945). Second part of the analysis.

$f_{\sf CSE}$ vs. $\Delta \eta_{\sf ii}$ between 7 and 13 TeV CMS results


- CMS 7 TeV analysis performed in three bins of p_T^{jet2} and three bins of $\Delta \eta_{jj} = 3-4, 4-5, 5-7$ (CMS, EPJC 78 (2018) 242)
- For Trend of increasing f_{CSE} with $\Delta \eta_{ii}$ is confirmed with new 13 TeV results.
- New results reach previously unexplored values of $\Delta \eta_{ii}$

We extract the fraction f_{CSE} based on the charged particle multiplicity between the jets:


$$f_{CSE} \equiv \frac{N(N_{tracks} < 3) - N_{bkg}(N_{tracks} < 3)}{N_{all}} \equiv \frac{\text{color-singlet exchange dijet events}}{all dijet events}$$

The fraction f_{CSE} is measured as a function of:

- $\Delta \eta_{jj} \equiv |\eta^{jet1} \eta^{jet2}|$: Sensitive to expected BFKL dynamics, since it's related to resummation of large logs of *s*.
- $p_T^{jet 2}$: Sensitive to expected BFKL dynamics; allows for comparison at lower \sqrt{s} .
- ▶ $\Delta \phi_{ij} \equiv |\phi^{jet1} \phi^{jet2}|$: Sensitive to deviations of 2 → 2 scattering topology of color-singlet exchange.

Multiplicity of charged particles between the jets

Color-exchange events dominate at large $N_{tracks} \rightarrow Control$ region to estimate fluctuations at low N_{tracks} . Two data-based approaches:

- Control dijet sample: two jets on the same-side (SS) of the CMS detector, $\eta^{jet1}\eta^{jet2} > 0$. Normalize to events with jets in opposite sides (OS) of CMS, $\eta^{jet1}\eta^{jet2} < 0$, in $N_{tracks} > 3$.
- Negative binomial distribution (NBD) function: Fit data with NBD in $3 \le N_{\text{tracks}} \le 35$, extrapolate down to $N_{\text{tracks}} = 0$.