Overview of ATLAS Forward Proton detectors for LHC Run 3 and plans for the HL-LHC

Maciej Lewicki on behalf of ATLAS Forward Detectors

Institute of Nuclear Physics Polish Academy of Sciences

Forward proton scattering in a diverse physics program

ATL-PHYS-PUB-2017-012

Exclusive jets
Trzebinski et al 1503.00699
Harland-Lang et al 1405.0018

Top quarksGoncalves et al 2007.04565
Howarth 2008.04249

Higgs boson
Cox et al 0709.3035
Heinemeyer et al 0708.3052

Leptons
CMS 1803.04496
ATLAS 2009.14537

W bosons

Tizchang, Etesami 2004.12203 Baldenegro et al 2009.08331

Fichet et al 1312.5153 Baldenegro et al 1803.10835

Beresford & Liu 1811.06465 Harland-Lang et al 1812.04886

Diffraction ≡ colour singlet exchange:

- photon
- Pomeron (two gluons + ...)

Measurements of diffractive processes – **discrimination tool** for models:

- discrimination tool for models:
- ▶ QCD hard and non-perturbative,
- probing electroweak scale,
- ▶ physics beyond SM.

Natural ways to seek for diffraction

- rapidity gaps,
- forward protons

Measurements methods

Measuring rapidity gap:

- + widely used for diffractive pattern recognition
- + no need for additional detectors
- gap is frequently destroyed (pile-up background)
- gap may be out of acceptance

ATLAS, Eur.Phys.J.C 72 (2012) 1926 ATLAS, Phys.Lett.B 754 (2016) 214-234

Measuring forward protons:

- + **Protons measured directly** (deflection $\rightarrow \vec{p}$, E)
- + Suitable for pile-up environment
- Protons are scattered at very small angles
- Additional detectors required far downstream.

Forward Detectors in ATLAS

JINST 11 (2016) P11013

Absolute Luminosity For ATLAS

- ► Soft diffraction, elastic scattering
- ► Input for MC generators: cosmic ray showers, pile-up simulation

- ► 4 vacuum-sealed spectrometers housed in Roman Pots (RP), inserted vertically; NEAR and FAR on both sides of IP (at 237 and 241/245 m, < 2mm from beam).
- ► Trigger capability
- ► Multi-layer scintillating fibre (SciFi)
- ► Tracking detectors, resolution: $\sigma_x = \sigma_y = 30 \mu \text{m}$
- ► Read-out by Multi-Anode-Photo-Multipliers
- ► Special runs: low pile-up, high β^* optics

ATLAS Forward Proton detector

- ▶ 4 Roman Pots devices: NEAR and FAR, both sides of IP (205, 217 m), inserted horizontally onto beam.
- ► 4 Silicon Tracker (SiT) planes in each RP:
 - ► 336×80 pixels, $50\times250 \ \mu\text{m}^2$, 230 μ m thick,
 - ► SiT resolution: σ_x =6 μ m at 14° tilt.
- ► FE-I4 readout chips; as in ATLAS IBL
- ► Trigger capability

- ► Time of Flight (ToF) detectors in FAR stations:
 - 16 Quartz Cherenkov bars,
 - ► ToF resolution $\sigma_t \approx 25$ ps.
 - ► Light gathered by: Micro-Channel Plate Multi-Anode PMT

ATLAS Forward Proton detector

Unfolding proton kinematics

Position in the AFP \longleftrightarrow proton kinematics at IP:

At the IP the proton is described by six variables: position: $x_{\text{IP}}, y_{\text{IP}}, z_{\text{IP}}$ p_T : p_x, p_y

energy: E_{IP}

- They translate to positions at the AFP: x_{AFP} , y_{AFP} , $\frac{dx_{AFP}}{dz}$, $\frac{dy_{AFP}}{dz}$
- Challenges: non-uniform high radiation environment, background from showers, high pile-up

 Detector resolution directly affects precision of measuring proton kinematics:

Run 190644, Event 51422085 Time 2011-10-09, 16:29 CEST

Signal:
$$pp \rightarrow p + (\gamma \gamma \rightarrow ee) + p$$

Scattered protons originate from the signal vertex

Run 190644, Event 51422085 Time 2011-10-09, 16:29 CEST

Background: Non-diffractive di-lepton production + forward protons from pile-up

Scattered protons originate from pile-up vertices

Reducing physics background with ToF

For events with double proton tag:

- ► Measure ToF difference: $\Delta t = (t_A t_C)/2$
- ► Calculate vertex position: $z_{\text{ToF}} = \frac{c}{2} \Delta t$
- ► Compare *z* positions reconstructed by ATLAS and AFP ToF:

ToF performance in Run 2

Performance analysis (2017 data, $\mu \approx 2$) ATL-FWD-PUB-2021-002:

- Measured time resolution: $20 \pm 4 \text{ ps (A)}, 26 \pm 5 \text{ ps (C)}$
- ► Measured pp vertex resolution: 5.5 ± 2.7 mm

- Poor efficiency (few %) in Run 2 due to fast PMT degradation.
- ► Improvements ongoing for Run 3 data taking.
- $\,\blacktriangleright\,$ Long-lifetime PMTs to ensure higher efficiencies.
- ► More on Run 2 performance & Run 3 perspectives: ATL-FWD-PROC-2020-001 ATL-FWD-SLIDE-2021-545

In situ AFP global alignment with exclusive di-muon events

 $(\gamma \gamma \rightarrow \mu \mu) + p$ as a "standard candle":

1. Compare:

$$\xi_{AFP} = 1 - \frac{E_{\text{proton}}}{E_{\text{beam}}}$$
 with $\xi_{II}^{A/C} = \frac{m_{II}e^{(+/-)y_{II}}}{\sqrt{s}}$

2. Adjust global RP shift to match ξ_{AFP} to ξ_{ll}

- ► Background small and well modelled by event mixing,
- ► Alignment precision uncertainty currently quoted as 300 μ m
 - \rightarrow Ongoing work to improve 100 μ m seems realistic.

Track reconstruction efficiency & data stability

probability of recording track in "PROBE" station if one was recorded in "TAG" station. Efficiency ≡

Lower efficiencies in FAR stations - radiation degradation? showers?

Showers in SiT planes and RP walls

- Evidence of showers in SiT material → long non-Poisson tail in hit multiplicity per plane, higher for each consecutive pixel layer. → farther layers record higher charge.
- Electromagnetic creation of δ -electrons.
- ► Strong high-multiplicity hadron showers.
- Showers also evident in comparing multiplicities in FAR and NEAR stations.
- Largest contribution to inefficiency of reconstruction.

number of hits / event

Data

Run 2

- $\sqrt{s} = 13 \text{ TeV}, \quad \beta^* = 0.3 \text{ m}, 0.4 \text{ m}$
- ► Two setups (2016, 2017):
 - ▶ one-arm
 - ► two-arms (+ TOF (poor efficiency))
- ► Data taken during in **low pile-up runs**:
 - ► $0.03 \lesssim \mu \lesssim 0.05$ int. lumi.: $\approx 100 \text{ nb}^{-1}$, main goal: soft diffraction
 - ► $0.3 \lesssim \mu \lesssim 1$ int. lumi.: $\approx 1.15 \text{ pb}^{-1}$, main goal: low- p_t jets
 - ▶ $\mu \approx 2$: int. lumi.: $\approx 150 \text{ pb}^{-1}$, main goals: electro-weak physics, hard diffraction. SD $t\bar{t}$
- ► Data taken during **standard runs**:
 - int. lumi.: $\approx 46.9 \text{ fb}^{-1}$ goal: hard diffraction

Run 3 plans

- $ightharpoonup \sqrt{s} = 13 \text{ TeV}, \quad 0.2 < \beta^* < 1.1 \text{ m}$
- ► Setup: two-arms setup + TOF
- ightharpoonup Data to be taken mainly at **high-** μ
- ► Requesting special **low pile-up runs**:
 - $\mu \approx 0$ main goal: soft diffraction
 - $\mu \approx 1$ main goal: low- p_t jets
 - $\mu \approx 2$: main goals: electro-weak physics, hard diffraction, SD $t\bar{t}$

ATLAS + AFP \rightarrow 32 fb⁻¹ + GRL \rightarrow \approx 15 fb⁻¹

Unprecedented amount of data for diffractive physics!

First High Lumi AFP Publication

Phys. Rev. Lett. 125, 261801 (2020):

Observation and Measurement of Forward Proton Scattering in Association with Lepton Pairs Produced via the Photon Fusion Mechanism at ATLAS

- ► \approx 15 fb⁻¹, single proton tag (so far)
- ► More in talk by Krzysztof Cieśla (today at 18:00)

- ► Exclusive di-leptons, $pp \rightarrow pl^-l^+p$:
 - proton(s) measured in AFP,
 - leptons ($\mu^+\mu^-$, e^+e^-) measured in ATLAS
- ► 2017 data; $\sqrt{s} = 13 \text{ GeV/}c$; $L = 14.6 \text{ fb}^{-1}$
- ► 57 (123) candidates in the $ee + p (\mu \mu + p)$ final state.

Physics Analysis: Exclusive Di-lepton Measurement with AFP Tag

- ► Proton energy resolution at ≤10% (FWHM≈0.005)
- ► Powerful background rejection with AFP:
 - proton tagging,
 kinematics mate
 - kinematics match: proton vs lepton system

- ► Great performance: 95% signal acceptance with 85% background rejection
- ▶ Background-only hypothesis rejected with a significance exceeding 5σ in each channel.

Physics analysis: Single Diffraction with ALFA tag

- ► \sqrt{s} = 8 TeV, very low μ ,
- ► intact proton reconstructed in ALFA $(10^{-4} < \xi < 0.025)$,
- ► remnants *X* measured in ATLAS,
- ► measured also: $d\sigma/d\xi$, $d\sigma/dt$, $d\sigma/d\Delta\eta$
- Regge interpretation: Pomeron intercept $\alpha(0) = 1.07 \pm 0.09$

First single diffraction ALFA publication! JHEP 02 (2020) 042:

Measurement of differential cross sections for single diffractive dissociation in $\sqrt{s} = 8$ TeV pp collisions using the ATLAS ALFA spectrometer

0

Status and plans

No major changes between Run 2 and Run 3 detector design.

AFP hardware updates:

- ▶ improvements on **cooling of silicon detectors** (new heat exchangers),
- ▶ production and installation of **new tracking modules**,
- major update of ToF detectors: new Out-of-Vacuum design of detector flange, R2D2 based MCP-PMT, modified back-end electronics, single-channel pre-amps and trigger, trigger decoder, pulser modules, picoTDC
- successful test beams at DESY and CERN-SPS (OoV solution, trigger module, new ToF PMTs)
- ▶ both NEAR stations installed just before COVID-19 lock-down, installation of FAR stations completed this month.

ALFA hardware updates:

- ▶ improvement and maintenance of **cooling system**,
- exchange of readout system due to radiation damage,
- installation of radiation shielding: concrete blocks around LHC beampipe upstream ALFA.

Ready for Run 3 data-taking!

Status and plans

Software and analysis:

- ▶ Proton CP group: alignment, optics, cuts, performance and more
 - → proton physics object delivered to ATLAS, used in several physics analyses across working groups in ATLAS (SM, EWK, TOP, EXOTICS, ...)
- ► Understanding of the proton object:
 - → reducing systematic uncertainties, studies of reconstruction efficiency
- ► Work towards tuning full Geant4 simulation.

Run 3 data-taking:

- ► AFP: standard (high-µ) runs,
- ► ALFA: only for $\sqrt{s} \ge 13.5$ TeV and very high- β^* optics for measurement of elastic scattering:
 - ▶ $\beta^* = 3 \text{ km}, \sqrt{s} = 14 \text{ TeV},$
 - $\beta_x^* = 3 \text{ km}, \beta_v^* = 6 \text{ km}, \sqrt{s} = 13.5/14 \text{ TeV}, \text{ flat optics}$
 - $\beta^* = 6 \text{ km}, \sqrt{s} = 14 \text{ TeV},$

Exclusive Higgs $(b\bar{b} \text{ decay, spin, QCD mechanism})$

JINST 4 (2009) T10001: "Higgs and New Physics with forward protons at the LHC" JHEP 090(2007) 0710: Detecting Higgs bosons in the bb decay channel using forward proton tagging at the LHC EPJ C 53 (2008) 231–256: Studying the MSSM Higgs sector by forward proton tagging at the LHC

New physics in two-photon processes at high mass $(\gamma\gamma \rightarrow \gamma\gamma, \gamma\gamma \rightarrow ZZ/Z\gamma)$

JHEP 02 (2015) 165: "Light-by-light scattering with intact protons at the LHC: from Standard Model to New Physics"
0808.0322: "Anomalous WWY coupling in photon-induced processes usine forward detectors at the LHC"

$\mathbf{SM} \ \mathbf{E-W:} \ \gamma \gamma \ \rightarrow \ W$

JHEP 07 (2020) 191: "Pinning down the gauge boson couplings in WWy production using forward proton tagging" JHEP 12 (2020) 165: "Central exclusive production of W boson pairs in pp collisions at the LHC in hadronic and semi-leptonic final states"

Top quarks production

arXiv:2008.04249: "Elastic Potential: A proposal to discover elastic production of top quarks at the Large Hadron Collider" Phys. Rev. D 102 (2020) 074014: "Top quark pair production in the exclusive processes at LHC"

Run 4 potentially rich physics programme!

Exclusive jets (SM & BSM)

Eur. Phys. J. C (2015) 75: 320: "On the Possibility of Measuring the Singletagged Exclusive Jets at the LHC"

Searches for SUSY

PRL 123 141801: "Search Strategy for Sleptons and Dark Matter Using the LHC as a Photon Collider" JHEP 04 (2019) 010: "LHC searches for Dark Matter in compressed mass scenarios: challenges in the forward proton mode"

Searches for ALPS $(\gamma \gamma \rightarrow \text{invisible}, \gamma \gamma \rightarrow \gamma \gamma)$

JHEP 06 (2018) 131: "Searching for axionlike particles with proton tagging at the LHC"

HL-LHC with AFP?

Challenges and open questions:

- ▶ Novel beamline: crab cavities, collimators, magnets vs AFP at 180 / 200 / 220 m?
- ► Crossing angle complementarity: Points 1 and 5 with different optics and different RP acceptance.
- ▶ Pile-up rejection at ≈200 vertices: demands sub-10 ps ToF with Silicon/LGAD/Cherenkov technology + additional timing devices in the central detector.
- ▶ Data acquisition and analysis: demand new algorithms (ML?) and solutions
- Reproducibility principle: HL-LHC+RP discovery science needs 2 independent experiments?
- ► Community: attract + sustain talent and resources for 20+ years?

Run 4+ (HL-LHC) Optics – high lumi, low β^*

Preliminary studies done with HL-LHC optics ver. 1.4:

- ► RP at $15\sigma+0.5$ mm from the beam, example acceptance at 190 m.
- ► $\beta^* = 0.4 \text{ m}$
- ► Crossing angle $\phi = 180^{\circ}$ disadvantageous for AFP:
 - \rightarrow diffr. protons closer to the beam
 - → affecting energy resolution large difference in energy loss translates to small spatial distance.

Summary

Run 2:

- Continuation of performance studies.
- ▶ Ongoing elastic, diffractive and (semi-)exclusive analyses based on Run 2 data → stay tuned!

Run 3:

- ► AFP ToF system: new PMTs, new design Out-of-Vacuum solution.
- ► Successful test beams at DESY and SPS with AFP.
- ► All stations installed! → Commissioning.
- ► ALFA: request data-taking in Run 3 if $\sqrt{s} \ge 13.5$ TeV
- ► Almost ready for Run-3 data taking expecting factor 10 more data!

Run 4:

- Physics programme being discussed within ATLAS,
- Output will set the constraints on preferred detector localization and technology (position and timing resolutions),
- ▶ Optimization of Run 4 optics to enhance acceptance is considered.

AFP Inter-plane local alignment

▶ Proton traversing AFP SiT creates charge deposits in each plane, measured at *x* position relative to the edge.

Ideal alignment:

Hit to edge distance: \rightarrow same for all planes

In reality:

Hit to edge distance:

→ may differ for each plane

Employed procedures account for:

- ightharpoonup offsets in x and y,
- ► (rotation about *z* axis.)

Systematic uncertainties in $pp \rightarrow ppll$

in measurements of cross-sections

Source of systematic uncertainty	Impact
Forward detector	
Global alignment	6%
Beam optics	5%
Resolution and kinematic matching	3-5%
Track reconstruction efficiency	3%
Alignment rotation	1%
Clustering and track-finding procedure	< 1%
Central detector	
Track veto efficiency	5%
Pileup modeling	2-3%
Muon scale and resolution 3%	
Muon trigger, isolation, reconstruction efficiencies	1%
Electron trigger, isolation, reconstruction efficiencies	1%
Electron scale and resolution	1%
Background modeling	2%
Luminosity	2%

AFP SiT trigger rate

cm>/<m>

0.08

0.06

0.04

-0.02

-0.04

-0.06

AFP-track counting

AFP Side-C Near

- Trigger rate (2/3 SiT planes majority vote) follows pile-up rate –
 - → beam-induced backgrounds are small.
- Rate stable with respect to other forward detectors /luminosity monitors (LUCID)

Mean and RMS

Other runs

√s= 13 TeV

Calibration run

p_{missing} 4-vector for dark matter searches

Exclusive jets

 ${\bf Fig.~3}$ The acceptance for events with both protons in the forward detectors as a function of the missing mass.

Fig. 4 Exclusive jet production cross section as a function of the missing mass.

Fig. 5 The acceptance for events with exactly one proton in the forward detector as a function of the missing mass.

Fig. 6 Diagrams of background events: double Pomeron exchange (a), single diffractive (b) and non-diffractive (c) jet production. The double line marks the Pomeron exchange.

Diffractive $t\bar{t}$ production

Exclusive Higgs

W boson production in diffractive events

Search for axion-like particles in diffractive events