

# Anomalous $\gamma\gamma \rightarrow t\bar{t}$ scattering at the LHC

C. Baldenegro, <u>A. Bellora</u>, S. Fichet, G. von Gersdorff, M. Pitt, C. Royon Low-x 2021 27 Sep. – 1 Oct. Isola d'Elba, Italy

### Introduction



- Peripheral pp collisions at the LHC produce quasi-real photons
  - LHC works as a  $\gamma\gamma$  collider!
  - QED  $\gamma\gamma \rightarrow t\bar{t}$  process has never been measured so far
    - Central exclusive  $t\bar{t}$  production has  $\mathcal{O}(0.1)$  fb cross section  $(\mathcal{O}(1)$  fb for semi-exclusive)
    - Can be measured with forward detectors
      - CMS PPS
      - ATLAS AFP





#### Introduction



- Recent studies:
  - V. P. Goncalves et al. (<u>arxiv:2007.04565</u>): SM exclusive and semiexclusive tt
    *t p*roduction γγ, γP, PP
  - M. Łuszczak et al. (arxiv:1810.12432):  $\gamma \gamma \rightarrow t \bar{t}$  production with/without proton dissociation in  $k_T$ -factorisation approach
- SM  $t\bar{t}$  production dominant at low mass. BSM contributions will modify the high- $m_{t\bar{t}}$  region
  - Anomalous γγtt̄ couplings could give an indication of composite Higgs / extra dimensions
  - This approach could complement searches for on-shell BSM particles
- EFT approach (valid for  $\Lambda_{BSM} \gg m_{t\bar{t}}$ )
  - Model-independent way of addressing this question

## Signal model

#### Anomalous interactions modeled via dimension-8 EFT operators

CP-even, 2 derivatives





 $\begin{array}{ll} \mathcal{O}_{1} = \zeta_{1}m_{t}F^{\mu\nu}F_{\mu\nu}t\bar{t} & \mathcal{O}_{2} = \zeta_{2}m_{t}F^{\mu\nu}\tilde{F}_{\mu\nu}\bar{t}\gamma_{5}t \\ \\ & \text{CP-odd, 2 derivatives} \\ \mathcal{O}_{3} = \zeta_{3}m_{t}F^{\mu\nu}\tilde{F}_{\mu\nu}t\bar{t} & \mathcal{O}_{4} = \zeta_{4}m_{t}F^{\mu\nu}F_{\mu\nu}\bar{t}\gamma_{5}t \\ \\ & \text{CP-even, 3 derivatives} & \text{CP-odd, 3 derivatives} \\ \mathcal{O}_{5} = i\zeta_{5}F^{\mu\rho}F_{\rho}^{\nu}\bar{t}\gamma_{\mu}\partial_{\nu}t & \mathcal{O}_{6} = i\zeta_{6}F^{\mu\rho}F_{\rho}^{\nu}\bar{t}\gamma_{5}\gamma_{\mu}\partial_{\nu}t \end{array}$ 

•  $\zeta_i$  (*i* = 1, ..., 6) are the anomalous coupling strengths (GeV<sup>-4</sup>)



## Unitarity preservation

 Study performed both with and without a form factor to preserve unitarity:





3-derivative operators grow faster at high- $m_{t\bar{t}}$  as expected



## Signal simulation framework

- EFT lagrangian implemented in MadGraph
- MadGraph matrix element calculation used in FPMC to generate exclusive events. Hadronization and parton shower with Herwig6



- $\sqrt{s} = 14 \text{ TeV}$
- Proton  $\xi$  in the 0.015 0.2 range
  - Match forward detectors acceptance
- Detector simulation with Delphes (CMS reference datacard)
  - 2% gaussian smearing on  $\xi$  to account for detector uncertainties



## Coupling vs. Cross Section



Low-x 2021

7



## $t\bar{t}$ decay channels

- $3 t\bar{t}$  decay channels, depending on the W decay type
  - Fully-leptonic: lowest BR, two neutrinos make the top quark reconstruction less precise
  - Fully-hadronic: highest BR, although top quarks are harder to resolve in single large-R jets, higher backgrounds
  - Semi-leptonic  $(e/\mu)$ : good BR compromise, easy and precise reconstruction
- Preliminary results in semi-leptonic channel



τ+jets 15%

#### e+jets 15%





### Background



- Main contributions:
  - Non-diffractive  $t\bar{t}$  + pileup protons from soft-diffractive events
  - Non-diffractive WW + pileup protons (mostly negligible)
  - SM exclusive  $t\bar{t} \rightarrow$  negligible
- Background events generated with MadGraph+Pythia8
- Identical detector simulation as for signal
- Pileup protons added sampling from a  $\frac{1}{\xi}$  p.d.f. for an average conservative pileup of 50, in the 0.015 0.2  $\xi$  range
  - $\sim 28$  % probability of having at least one pileup proton per side!!



#### **Pre-selection**

- Enhance semi-leptonic decay channel and select particles for reconstruction:
  - Leptons  $\geq 1$
  - b-tagged jets  $\geq 2 (j_1^b, j_2^b)$
  - Non-b-tagged jets  $\geq 2 (j_1, j_2)$
  - MET ≥ 20 GeV
  - At least one tagged proton per side
- Highest- $p_T$  ( $\xi$  for protons) particles are always chosen, to favor anomalous production (high- $m_{t\bar{t}}$ )



### Reconstruction



- b-jet assignment: check the mass of  $j_1^b + j_1 + j_2$  and  $j_2^b + j_1 + j_2$ 
  - Assign to the hadronic-decaying top *j*<sup>b</sup><sub>i</sub>,based on which yields the result closest to the top quark mass
- Assume  $p_T^{\nu} = MET$  and estimate  $p_z^{\nu}$  by imposing mass of  $\ell + \nu = m_W$ 
  - Analytically solved
- Reconstructed  $m_{t\bar{t}}$  is more accurate
- Setter match with  $m_{t\bar{t}}$  reconstructed with tagged protons!



#### Central selection: exclusivity cuts



- Exploit exclusivity of signal, top quarks emitted back-to-back:
  - Low acoplanarity:  $|1 \frac{|\Phi^{t_1} \Phi^{t_2}|}{\pi}| < 0.01$
  - Top quarks balanced in  $p_T$ :  $p_T^{t_1}/p_T^{t_2} > 0.88$
- Selection optimized for best significance



#### Central selection: high-mass cuts





- Favor anomalous production by selecting high-m<sub>tt</sub> events:
  - Reconstructed mass of the  $t\bar{t}$  system:  $m_{t\bar{t}} > 960 \text{ GeV}$

• 
$$H_T = p_T^{\ell} + p_T^{\nu} + p_T^{j_1} + p_T^{j_2} + p_T^{j_1^b} + p_T^{j_2^b} > 1100 \text{ GeV}$$

• Selection optimized for  $\mathcal{O}_1$ -  $\mathcal{O}_4$ 



#### Central selection: top quark $p_T$



• Favor anomalous production by selecting events with high top quarks  $p_T$ :

$$p_T^{t_i} > 425 \text{ GeV}$$

14



#### Proton matching

Four-momentum conservation in  $p \ p \rightarrow p \ t \overline{t} \ p$   $\rightarrow$  kinematic correlations between forward protons and central system

$$m_{t\bar{t}}^p = \sqrt{s\xi_1\xi_2} \rightarrow \left|\frac{m_{t\bar{t}}^p - m_{t\bar{t}}^c}{m_{t\bar{t}}^p}\right| < 0.08$$

• 
$$y_{t\bar{t}}^p = \frac{1}{2} \log\left(\frac{\xi_1}{\xi_2}\right) \to \left|y_{t\bar{t}}^c - y_{t\bar{t}}^p\right| < 0.05$$



## Results & predictions

| S                 | election step  | $\zeta_1 = 10^{-11} [\text{GeV}^{-4}]$         | $\zeta_5 = 10^{-11} [\text{GeV}^{-4}]$ | Non-exclusi                          | ve Non-excl<br><i>WW</i>             | usive          |  |
|-------------------|----------------|------------------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|----------------|--|
| F                 | Pre-selection  | 106.3                                          | 88.6                                   | 5·10 <sup>6</sup>                    | 3.0.10                               | ) <sup>3</sup> |  |
| Central selection |                | 13.3                                           | 21.2                                   | 1.2·10 <sup>4</sup>                  | 25.2                                 | 25.2           |  |
| Pre               | oton selection | 9.45                                           | 14.2                                   | 96.7                                 | ~0                                   |                |  |
| _                 |                |                                                |                                        |                                      |                                      |                |  |
|                   |                | $\zeta_1 = 1 \cdot 10^{-11} [\text{GeV}^{-4}]$ |                                        | <sup>1</sup> [GeV <sup>-4</sup> ] SN | 1 <i>t</i> <del>t</del> SM <i>WW</i> |                |  |
|                   | Cross sectio   | n 9.42 fb                                      | 11.51                                  | ib 903                               | 3 pb 131.3 pb                        |                |  |

- Results shown for a single coupling point and 300 fb<sup>-1</sup> integrated luminosity, passing fractions do not strongly depend on coupling value
- Very strong background rejection provided by proton tagging
  - Could be further improved by using timing detectors
- Only SM  $t\bar{t}$  really contributes to background



## Results & predictions

| Coupling [10 <sup>-11</sup> GeV <sup>-4</sup> ] | $5\sigma$<br>No form factor | 95 % CL<br>No form factor | $5\sigma$ With form factor | 95 %<br>With form factor |
|-------------------------------------------------|-----------------------------|---------------------------|----------------------------|--------------------------|
| $\zeta_1$                                       | 2.4                         | 1.5                       | 3.1                        | 1.9                      |
| $\zeta_2$                                       | 2.3                         | 1.4                       | 3.1                        | 1.9                      |
| $\zeta_3$                                       | 2.3                         | 1.4                       | 2.9                        | 1.8                      |
| $\zeta_4$                                       | 2.3                         | 1.4                       | 3.1                        | 1.9                      |
| $\zeta_5$                                       | 1.9                         | 1.2                       | 2.2                        | 1.3                      |
| $\zeta_6$                                       | 2.1                         | 1.3                       | 2.3                        | 1.4                      |

- Preliminary sensitivities to anomalous couplings extracted for 300 fb<sup>-1</sup> integrated luminosity and  $\sqrt{s} = 14$  TeV
- Assuming similar object reconstruction performance and acceptance at the HL-LHC with 3000 fb<sup>-1</sup>, would expect at most an improvement on the projections by a factor of ~3



## Summary & Outlook

- EFT model for anomalous  $\gamma\gamma t\bar{t}$  coupling implemented in FPMC
  - Available soon in MadGraph and FPMC!
- Anomalous exclusive tt production in semi-leptonic decay channel studied and analyzed
- Preliminary anomalous coupling sensitivities extracted for 300 fb<sup>-1</sup> at  $\sqrt{s} = 14$  TeV:
  - 95 % CL at  $\zeta \sim 2 \cdot 10^{-11}$  GeV<sup>-4</sup>
- Next steps:
  - Finalization of the paper and submission!



## Thanks for your attention!



## Backup



## **Delphes Simulation**

- Standard CMS datacard:
  - $p_T$  and  $\eta$ -dependent tracking efficiency (~95 % in the most populated region)
  - Momentum resolution based on arXiv:1405.6569 and arXiv:1502.02701 formulas
  - ECAL resolution formula based on hep-ex/1306.2016 and hep-ex/1502.02701
    - Also η-dependent
- Jet clustering with FastJet:
  - Anti-kt, R = 0.5, JetPTMin = 20 GeV
- MET from Particle Flow approach
- b-tagging based on arXiv:1211.4462



## Coupling vs. Cross Section



22



#### Correlation cross-checks



•  $p_T$  balance distribution not very affected by the acoplanarity cut



#### **Correlation cross-checks**



•  $H_T$  distribution not significantly affected by  $m_{t\bar{t}}$  cut