Photon induced processes results at CMS

Low-x 2021, Isola d'Elba, Italy

Beatriz Lopes

on behalf of the CMS collaboration

29/09/2021

Introduction

- Photon-induced processes at the LHC can be measured as exclusive processes
- What do we call **exclusive production** of a system X? (X can be ee, $\mu\mu$, $\gamma\gamma$, WW, ZZ, $Z\gamma$, $t\bar{t}$, etc.)
 - X is produced and protons leave collision intact (stay in the beam pipe at very small angles)
 - No proton remnants: only activity detected in central detector are decay products of X
 - Intact protons can be measured using dedicated forward detectors
 - In case $X=\gamma\gamma$, it is often called light-by-light scattering (LbyL)

Not all exclusive processes are photon-induced (QED)...

- Exclusive dilepton (ee, $\mu\mu$) production is always a QED process
- Whereas exclusive $\gamma\gamma$ is:
 - dominated by QCD at low mass
 - dominated by QED at high mass

Not all exclusive processes are photon-induced (QED)...

- Exclusive dilepton (ee, $\mu\mu$) production is always a QED process
- Whereas exclusive $\gamma\gamma$ is:
 - dominated by QCD at low mass
 - dominated by QED at high mass

How can we measure them at the LHC?

 pp collisions only give access to high masses (where QED dominates);

• In PbPb collisions, the cross-section is enhanced (by a factor Z⁴) and we gain access to the low masses

accessible with current Precision Proton Spectrometer setup

Why do we want to measure them?

- Promising way to look for new physics
 - Sensitive to anomalous couplings of top quark, gauge bosons, ...
- Excellent mass resolution irrespective of decay mode of central system
 - energy loss of outgoing protons directly related to invariant mass of central system
 - allows precision tests of SM couplings
- High signal-to-background ratio: matching protons to central system eliminates most backgrounds

"Turning" the LHC into a photon-proton and photon-photon collider offers a rich additional physics programme!

Overview of the analysis possibilities

Physics programme for photon-induced processes at the LHC divided in 3 categories:

LOW MASS

PbPb collisions

recent results:

Exclusive dimuon production

(Phys. Rev. Lett. 127 (2021), 122001)

Light-by-light scattering

(Phys. Lett. B 797 (2019))

Overview of the analysis possibilities

 Physics programme for photon-induced processes at the LHC divided in 3 categories:

LOW MASS

INTERMEDIATE MASS

PbPb collisions recent results:

Exclusive dimuon production (Phys. Rev. Lett. 127 (2021), 122001)

Light-by-light scattering (Phys. Lett. B 797 (2019))

standard CMS program without tagged protons

Overview of the analysis possibilities

Physics programme for photon-induced processes at the LHC divided in 3 categories:

LOW MASS

INTERMEDIATE MASS

HIGH MASS

PbPb collisions

recent results:

Exclusive dimuon production (Phys. Rev. Lett. 127 (2021), 122001)

Light-by-light scattering (Phys. Lett. B 797 (2019))

 standard CMS program without tagged protons CMS pp + tagged protons in PPS*
recent results:

(Semi)exclusive dilepton production (JHEP 07 (2018) 153)

Exclusive diphoton production (PAS-EXO-18-014)

^{*}Precision Proton Spectrometer

How to measure photon-induced processes?

Low mass: PbPb collisions at the LHC

- PbPb collisions: typically hundreds of particles are produced and events are very "crowded"
- Exclusive PbPb events: Pb ions stay intact and only few particles are observed in final state, creating a very distinctive signature

typical PbPb event

exclusive µµ candidate event

How to measure photon-induced processes?

High mass: pp collisions at the LHC

- In pp collisions, processes like $\gamma\gamma \to \mu\mu$ can be easy to tag since the muons are the only tracks in the event
- But in other processes, like $\gamma\gamma \to t\bar{t}$, it is more complicated, and a more distinctive signature is needed...

Tagging the outgoing protons!

How to measure photon-induced processes?

High mass: tagging intact protons

- Tagging protons requires development of dedicated detectors
- Measuring protons inside the beam pipe is extremely challenging
- In CMS: the CMS-TOTEM Precision Proton Spectrometer (PPS)

 CMS central detector

 LHC sector 56

 Poman Pots

 LHC sector 45

 (not to scale)

Tagging protons at CMS

The Precision Proton Spectrometer

- Tag protons that leave collision intact, at ~200 m from interaction point
- Can measure protons that lost ~2-20% of their momentum
 - Good acceptance at high masses (starting ~400 GeV)
- Data available for LHC Run 2 2016-2018 (> 100 fb $^{-1}$)

momentum loss of each proton: $\xi_i = \frac{p_f - p_i}{p_i}$

mass of the central system:

$$m_X = \sqrt{s\xi_1\xi_2}$$

rapidity of the central system:

$$y_X = \frac{1}{2} \log(\xi_1/\xi_2)$$

Overview of the results

Will focus on most recent (Run 2) results

PbPb collisions

- Exclusive dimuon production
 (Phys. Rev. Lett. 127 (2021), 122001)
- Light-by-light scattering (Phys. Lett. B 797 (2019))

pp collisions with tagged protons

- Quasi-exclusive dilepton production (JHEP 07 (2018) 153)
- Exclusive diphoton production (PAS-EXO-18-014)

Exclusive dimuon production in PbPb

• Ions accelerated with impact parameter $b>2R_{\!A}$ can interact via photon-photon processes (ultra-peripheral collisions - UPC)

- p_T of muon pairs depends on overlap integral of the photon fluxes produced by the two nuclei \to muon pair $< p_T >$ could depend on b
- QED calculation predicts larger $< p_T>$ for smaller b values \to goal is to test this!
- Measuring $< p_T>$: larger $< p_T>$ results in larger acoplanarity $\alpha=1-|\Delta\phi_{\mu\mu}|/\pi$ (better experimental resolution)
- Experimental handle on b:

1 or both ions get into higher excited states

emission of more forward neutrons detected by the ZDC*

*zero-degree calorimeters, part of the CMS forward calorimeter system

Exclusive dimuon production in PbPb

- Initial energy and p_T of photons exchanged in ultra-peripheral collisions depend on impact parameter of interaction (b)
- Clear dependency observed, in qualitative agreement with QED calculation.

W. Zha et al. Phys. Lett. B 800 (2020) 135089

- Dependency normally not fully taken into account when modelling photon-induced interactions
 - -> theoretical effort needed in this direction

number of forward neutrons emitted by each nucleus

Light-by-light scattering in PbPb

- Signal: two back-to-back photons (1)
- Backgrounds: electrons misidentified as γ (2) QCD $gg \rightarrow \gamma\gamma$ (3)
- 14 events observed
- 9.0 \pm 0.9 signal expected and 4.0 \pm 1.2 background (3.7 σ evidence)
- Measured fiducial cross-section, consistent with SM prediction

$$\sigma_{\text{fid}}(\gamma\gamma \to \gamma\gamma) = 120 \pm 46 \text{ (stat)} \pm 12 \text{ (theo) nb}$$

theory prediction: $\sigma_{\rm fid}(\gamma\gamma\to\gamma\gamma)=116\pm12\,{\rm nb}.$ (Phys.Rev.Lett. 111 (2013) 080405,)

PbPb 390 μb⁻¹ (5.02 TeV)

assuming also the

hyper charge coupling

Light-by-light scattering in PbPb

Limits on ALPs

- New spin-even particles like pseudo scalar axion-like particles (ALPs) can contribute to LbyL scattering continuum or to new diphoton resonances
- This work sets limits on ALPs production in the range $m_a=5-90~{\rm GeV}$

Best limits to date over the mass range $m_a=5-50~{\rm GeV}$ (5 $-10~{\rm GeV}$) for ALPs coupling to electromagnetic (electroweak) current

The idea

- Exclusive and semi-exclusive production of lepton pairs, dominated by photon interaction
- Tag one (or both) protons with PPS. Double-arm acceptance of PPS starts at $m_{ll} \approx 400~{\rm GeV} \to {\rm low}$ expected number of double tagged events

Signal (1 or 2 intact protons)

Background (both protons dissociate)

The observation

Very important to validate PPS functioning (alignment, optics)

- $e^+e^-/\mu^+\mu^-$ selection in the central system combined with proton(s) in PPS (2016 data)
- Observation of semi-exclusive events with one tagged proton
- No observation for double-tagged events

```
\mu^+\mu^-: observed 12 events exp. background of 1.49 ± 0.07 (stat) ± 0.53 (syst) \rightarrow 4.3 \sigma
```

 e^+e^- : observed 8 events exp. background of 2.36 ± 0.09 (stat) ± 0.47 (syst) \rightarrow 2.6 σ

Combined significance $> 5 \sigma$

Exclusive diphotons in pp

Motivation

 Light-by-light scattering (LbyL) observed by CMS and ATLAS at low mass (up to a few GeV)

• First study of LbyL at high mass $(m_{\gamma\gamma}>350~{\rm GeV})$ at a hadron collider

• Sensitive to an effective dimension-8 extension of the SM (anomalous $\gamma\gamma\gamma\gamma$ couplings)

Exclusive diphotons in pp (γγγγ couplings) 28-01

2016 data: detect two photons with CMS and two outgoing protons with CT-PPS

• Select events with photon $p_T>75$ GeV, $m_{\gamma\gamma}>350$ GeV (compatible with CT-PPS double-arm

acceptance) and $1-|\Delta\phi_{\gamma\gamma}|<0.005$

After proton matching: observed 0 events

Set limits on quartic gauge couplings using the coupling parameters ζ_1 and ζ_2

$$|\zeta_1| < 3.7 \times 10^{-13} \text{ GeV}^{-4} \quad (\zeta_2 = 0),$$

 $|\zeta_2| < 7.7 \times 10^{-13} \text{ GeV}^{-4} \quad (\zeta_1 = 0).$

Summary

- Presented results on exclusive production of e^+e^- , $\mu^+\mu^-$, $\gamma\gamma$ in pp and PbPb collisions
- Set competitive limits on anomalous couplings and ALPs
- Current results with up to 9.4 fb⁻¹
- > 100 fb⁻¹ of data currently being analysed, many results to be out soon
- Future: more data and improved PPS setup will provide additional sensitivity

Backup slides

How can we measure them?

 pp collisions only give access to high masses (where QED dominates);

• In PbPb collisions, the cross-section is enhanced (by a factor Z⁴) and we gain access to the low masses

from S. Fichet, G. von Gersdorff, B. Lenzi, C. Royon, M. Saimpert

The event candidates

- $e^+e^-/\mu^+\mu^-$ selection in the central system combined with proton(s) in PPS (2016 data)
- Invariant mass and rapidity of two leptons superimposed with CT-PPS arms acceptance
- Observation of quasi-exclusive events with one tagged proton
- No observation for double-tagged events (the 2 events in the green area are consistent with expected pileup background)

Observation

• Plots: expected proton momentum loss (ξ) from lepton kinematics vs. measured ξ in PPS

Observation

- $\mu^+\mu^-$: observed 12 events for background estimate of 1.49 ± 0.07 (stat) ± 0.53 (syst) \rightarrow 4.3 σ
- e^+e^- : observed 8 events for background estimate of 2.36 ± 0.09 (stat) ± 0.47 (syst) \to 2.6 σ
- Combined significance $> 5 \sigma$

Very important result to validate PPS functioning (alignment, optics)

Exclusive diphotons in pp (γγγγ couplings) Couplings

The LbyL scattering process, which can be studied at the electroweak energy scale and higher in proton-proton collisions at the LHC, is of great interest because of its sensitivity to many SM extensions of quantum electrodynamics [9–13]. Among these, a purely effective extension of the SM Lagrangian using charge-parity conserving operators, as used, e.g., in Refs. [14–16] for the $\gamma\gamma$ W⁺W⁻ quartic coupling, leads to a minimum dimension-eight term for the four-photon coupling. This term contains the two parameters $\zeta_{1,2} = a_{1,2}^{\gamma\gamma}/\Lambda^4$, where Λ is the scale for new physics, generally at the order of a few TeVs:

$$L_8^{\gamma\gamma\gamma\gamma} = \zeta_1 F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2 F_{\mu\nu} F^{\mu\rho} F_{\rho\sigma} F^{\sigma\nu}.$$

$$|\zeta_1| < 3.7 \times 10^{-13} \text{ GeV}^{-4} \quad (\zeta_2 = 0),$$

 $|\zeta_2| < 7.7 \times 10^{-13} \text{ GeV}^{-4} \quad (\zeta_1 = 0).$

Exclusive WW + anomalous quartic gauge couplings (2016) 11

Run 1 result at 7+8 TeV (5.1+19.7 fb⁻¹)

- Select events with opposite sign $e\mu$ pair and $p_T(e\mu) > 30$ GeV and no associated charged particles detected from the same vertex
- 13 (2) events are observed over an expected background of 3.9 \pm 0.6 (0.84 \pm 0.15) events for 8 (7) TeV \rightarrow excess of 3.4 σ (evidence)

Exclusive WW + anomalous quartic gauge couplings 119

Run 1 result at 7+8 TeV (5.1+19.7 fb⁻¹)

 Results compatible with SM prediction for $\gamma\gamma \to WW$

obs.:
$$\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^\pm e^\mp p^{(*)}) = 10.8^{+5.1}_{-4.1}\,\mathrm{fb}.$$
 SM prediction: $6.2 \pm 0.5\,\mathrm{fb}$,

 Most stringent to date upper limits on the anomalous quartic gauge coupling operators $a_{\text{W}_{0,C}}$ (dimension-6) and $f_{M0,1,2,3}$ (dimension-8) are derived

Improved sensitivity is possible with Run 2 data and tagged protons

Light-by-light scattering in PbPb

Figure 7: Exclusion limits at 95% CL in the ALP-photon coupling $g_{a\gamma}$ versus ALP mass m_a plane, for the operators $aF\widetilde{F}/4\Lambda$ (left, assuming ALP coupling to photons only) and $aB\widetilde{B}/(4\Lambda\cos^2\theta_{\rm W})$ (right, including also the hypercharge coupling, thus processes involving the Z boson) derived in Refs. [30, 56] from measurements at beam dumps [60], in e⁺ e⁻ collisions at LEP-I [56] and LEP-II [57], and in p p collisions at the LHC [13, 58, 59], and compared to the present PbPb limits.

Light-by-light scattering in PbPb at ATLAS

Typical PbPb collision event at ATLAS

