Top quark in heavy ions in CMS

Luis F. Alcerro (On behalf of the CMS Collaboration) I.alcerro@cern.ch Collaborators: C. Royon (Ph.D. advisor), G. Krintiras Department of Physics & Astronomy University of Kansas

Low-x Meeting Elba, Italy Sept. 30, 2021

OUTLINE

- Introduction
- *t* production in pp
- tt production in pPb
- It production in PbPb
- It as a probe for QGP
- Summary

Introduction

Top quark:

 $m_t \sim 173 \text{ GeV}$

 $intial t \rightarrow bW \rightarrow b + \ell \nu (\sim 33\%)$

 $rightarrow t
ightarrow bW
ightarrow b+q\overline{q} (\sim 66\%)$

Solution Primarily produced in $t\bar{t}$ pairs by gluon fusion at LHC

$t\bar{t}$ in pp

- Constrain to proton PDF ($x \sim 1/\sqrt{s}$).
- Determine SM parameters like $|V_{tb}|$
- $t\bar{t}$ in pPb and PbPb:
 - Probe for nuclear PDFs
 - Paves the way for using top to probe QGP.

https://cms.cern/news/heavy-metal-hits-top

tt in pp

Measurements of $\sigma_{t\bar{t}}$ at $\sqrt{s} = 5$ JHEP 03 (2018) 115, 7, 8, <u>JHEP 08 (2016) 029</u> Eur. Phys. J.C. 77, 15 (2017) **13** <u>JHEP 09 (2017) 051</u> Eur. <u>Phys. J.C. 77, 172 (2017)</u> TeV

Relevance:

Solution Different \sqrt{s} test different Bjorken, -x distribution functions.

A and AA profit from pp measurements.

 $\mathcal{C} + jets$ (semileptonic): $t\bar{t} \rightarrow bb'W(\rightarrow \ell\nu)W'(\rightarrow q\bar{q'})$ High BR

Dilepton (leptonic):

 $t\bar{t} \rightarrow bb'W(\rightarrow \ell\nu)W'(\rightarrow \ell'\nu')$ High Purity

All jets (hadronic): $t\overline{t} \rightarrow bb'W(\rightarrow q\overline{q'})W'(\rightarrow q''\overline{q'''})$ Dirtiest and more challenging.

$t\bar{t}$ in pp at 5.02 TeV

- First measurement of $\sigma_{t\bar{t}}$ at 5.02 TeV was performed by CMS using data recorded in November 2015. JHEP 03 (2018) 115
- Solution Data sample corresponds to $\mathscr{L} = 27.4 \text{ pb}^{-2}$
- Two final states analyzed:
 - $\otimes \ell + jets:$ $t\bar{t} \rightarrow bb'W(\rightarrow \ell\nu)W'(\rightarrow q\bar{q'}) \rightarrow 2b\text{-jets} +$ isolated ℓ + 2 "light" jets + missing energy
 - $Olimpton: t\bar{t} \to b\bar{b}'W(\to \ell\nu)W'(\to \ell'\nu') \to$ 2b-jets + 2 leptons (opposite charge) + missing energy with $\ell, \ell' = e, \mu$

The SM prediction (NNPDF3.0 NNLO) J. Comp. Phys. Comm. Vol. 185.:

CERN-THESIS-2018-320

$t\bar{t}$ in pp at 5.02 TeV

Object reconstruction

- PF algorithm to reconstruct individual particles.
- Solution Jets (anti- k_T , R = 0.4) reconstructed from PF candidates. b-jets with CSVv2 algorithm.

 p_T^{miss} is the negative vector sum of all PF candidates in the event, projected in the transverse plane.

Background

- $\ell + jets$: multijet background estimated from control samples in data. All other backgrounds is taken from MC.
- Solution Dilepton: Z/γ^* and fake leptons $(W + jets, t\bar{t} \text{ in } \ell + jets)$ extracted from control samples in data. $t\overline{W}$ and WV from simulation.

Event selection

- $\circledast \ell + jets:$
 - electrons ($p_T > 40 \text{ GeV}$, $|\eta| < 2.1$), muons $(p_T > 25 \ GeV, |\eta| < 2.1)$.
 - At least 2 light jets ($p_T > 30 \text{ GeV}$, $|\eta| < 2.4$).
 - Solution b Events are classified into b tag multiplicity: $0b, 1b, \geq 2b$
- 🍥 Dilepton:
 - At least 1 muon ($p_T > 18 \text{ GeV}$, $|\eta| < 2.1$). Electrons ($p_T > 20 \text{ GeV}$, $|\eta| < 2.4$).
 - At least 2 jets ($p_T > 25 \text{ GeV}$, $|\eta| < 3$)
 - Solution Sector 2.1 S $\mu^{\pm}\mu^{\mp}$)
 - * Z-veto for $\mu^{\pm}\mu^{\mp}$: 76< $M_{\ell\ell}$ <106 GeV, $p_T^{miss} > 35 \ GeV$
 - $M_{\ell\ell} > 20 \ GeV$

tt in pp at 5.02 TeV Improvement with the 2017 data set Improvement expected with x10 higher luminosity and lower pileup! <u>CMS-PAS-TOP-20-004</u>

tt in pPb at 8.16 TeV

- Sirst observation of $t\bar{t}$ in pPb collisions by CMS Phys. Rev. Lett. 119, 242001
- Solution Data sample corresponds to $\mathscr{L} = 174 \ nb^{-1}$

High BR: ~ 34% ($e, \mu, \tau \rightarrow e, \mu$)

Moderate background contamination

The cross section $\sigma_{t\bar{t}}$ is extracted from likelihood fits of the invariant mass of the light jets ($W \rightarrow q\overline{q}$) in different categories of *b*-jet multiplicity (0,1 and ≥ 2).

Theoretical prediction (CT14 proton PDF) +EPPS16 nPDF for Pb) <u>arXiv:1706.09521</u>:

 $\sigma_{t\bar{t}}^{th} = 59.0 \pm 5.3 (\text{PDF})^{+1.6}_{-2.1} (\text{scale}) \text{ nb}$

tt in pPb at 8.16 TeV **Object reconstruction Background**

PF algorithm reconstruct individual particles.

- \bigcirc Jets with anti- k_T (R=0.4) clustering algorithm.
- b-jets tagged with CSVv2 discriminator.

W + jets assumed as a Landau distribution and QCD multijet from control samples in data

<u>HIN-17-002</u>

Event selection

Solution Exactly one isolated μ or e with $p_T > 30 \ GeV$, $|\eta| < 2.1$

At least 4 jets with $p_T > 25 \ GeV$, $|\eta| < 2.5$ and $\Delta R = 0.3$ (from ℓ).

tt in pPb at 8.16 TeV

 $t\bar{t}$ signal includes "correct" and "wrong" assignments. Post-fit $\frac{140}{120}$

20

50

100

If $W \rightarrow q\overline{q}$ "Correct"

Combination dominated by μ + *jets* channel

tt in pPb at 8.16 TeV

 $\sigma_{t\bar{t}} =$ $A \epsilon \mathscr{L}$

 $\odot \sigma_{t\bar{t}} = 45 \pm 8(total) \,\mathrm{nb}$ $o \sigma_{t\bar{t}}^{\mu+jets} = 44 \pm 3(stat) \pm 8(syst) \,\mathrm{nb}$ $\sigma_{t\bar{t}}^{e+jets} = 56 \pm 4(stat) \pm 13(syst) \text{ nb}$

Significance of > 5σ

tt in PbPb at 5.02 TeV

Sirst evidence of $t\bar{t}$ in nucleus-nucleus using PbPb collision data recorded by CMS. Phys. Rev. Lett. 125, 222001

Solution Data sample corresponds to $\mathscr{L} = 1.7 \ nb^{-1}$

Cleanest channel

BR(
$$t\bar{t} \rightarrow \ell^+ \ell^- \nu_\ell \overline{\nu}_\ell b\overline{b}$$
) ~ 5 %

Two methods to extract $\sigma_{t\bar{t}}$:

Dilepton only: Final state kinematic properties alone

Dilepton + b-jets: Inclusion of b-jets from b-quarks passing through the QGP ("jet quenching")

Theoretical prediction (CT14 NNLO + EPPS16 NLO) J. Comp. Phys. Com. Vol. 185., Phys. Rev. Lett. 110, 252004:

 $\sigma_{t\bar{t}}^{th} = 3.22^{+0.38}_{-0.35} (nPDF \oplus PDF)^{+0.09}_{-0.10} (scale) \mu b$

tt in PbPb at 5.02 TeV **Object reconstruction**

PF algorithm reconstruct individual particles.

- Solution Jets with anti- k_T (R=0.4) clustering algorithm.
- b-jets tagged with CSVv2 discriminator.

Background

Solution Main background is DY (Z/γ^*). Estimated from MC and data.

Nonprompt (QCD multijet, W+jets,...) from event mixing.

Event selection

Solution Jets: $p_T > 30$, $|\eta| < 2.0$

Signal extraction

- $e^{\pm}\mu^{\mp}$ is the highest sensitivity final state
- Boosted decision trees (BDT): based on kinematics of the leading and sub-leading p_T leptons.

Leptons are not affected by QGP.

tt in PbPb at 5.02 TeV

tt in PbPb at 5.02 TeV

Compatible with *pp* scaled data and QCD calculations.

Top quark as a probe for QGP

 $\tau_t \sim 10^{-24}$ sec. Does not hadronize and decays before QCD mechanisms start acting.

Solution Unlike other jet quenching probes (dijets, $Z/\gamma + jets$) which are produced simultaneously with the collision, tops can resolve the time evolution of QGP:

Solutions Depending p_t tops can decay before or within QGP.

- Taking "snapshots" at different times (p_t), one could resolve the QGP time evolution.
- Semileptonic $t\bar{t}$ represents a "golden channel":
 - 🍥 High BR
 - Good S/B

"Tag" and "probe"

Top quark as a probe for QGP 18 Pheno study PRL 120 (2018) 232301 MC for feasibility about using tops to resolve QGP.

Channel: Semimuonic

 $t\overline{t} \to W(\to \mu\nu_{\mu})W(\to q\overline{q})$

- The products of $W(\rightarrow q\overline{q})$ do not immediately interact with the QGP.
- $a = q \overline{q}$ propagates a in a certain decoherence time (τ_d) before starts interacting with the medium. So $t \to b + W \to q\overline{q}$ does not see the full QGP, only the portion after:

$\tau_{tot} = \gamma_{t,top}\tau_{top} + \gamma_{t,W}\tau_W + \tau_d$

5.5 TeV PbPb (15% quent

scenarios

PbPb equivalent lumi [nb⁻¹]

HL-LHC: short time

50

100

3

0

2

Ê

Summary

$$t\bar{t}$$
 at $\sqrt{s} = 5,7,8,13$ TeV.

 $t\bar{t}$ in *pp*, *pPb* and and evidence in *PbPb*.

 $t\bar{t}$ in AA collisions has the potential to resolve the time structure of the QGP.

https://www.symmetrymagazine.org/article/top-quark-couture

Backup slides

Backup

A glimpse to heavy ion physics

Two Lorentz contracted discs of highly complex systems of partons collide.

When the discs overlap:

soft interactions dominate (small p_T transfer) + tiny amount of hard perturbative processes.

~ 1 fm after the collision:

 $ef{eq:empedium} \gg ef{hadron}$ and enormous entropy.

Pressure-driven hydrodynamic expansion builds up p_T

As the two discs move apart:

QGP is continually producing.

Each droplet of QGP hydrodynamically expands, flow and cools down until ϵ droplet ~ ϵ hadron·

The process ends once each participant loses ~ 85% oREATING JEAVIE-LONG COLLISIONS

final detected

Backup

Identification of b-jets

Combined Secondary Vertex Algorithm (CSV Run I, CSv2V Run II): combines the info. of displaced tracks and secondary vertices associated with the jet using MVA.

Table 1: Input variables used for the Run 1 version of the CSV algorithm and for the CSVv2 algorithm. The symbol "x" ("—") means that the variable is (not) used in the algorithm

Input variable	Run 1 CSV	CSVv2
SV 2D flight distance significance	Х	Х
Number of SV	—	Х
Track $\eta_{\rm rel}$	Х	Х
Corrected SV mass	Х	Х
Number of tracks from SV	Х	Х
SV energy ratio	Х	Х
$\Delta R(SV, jet)$	—	Х
3D IP significance of the first four tracks	Х	Х
Track <i>p</i> _{T,rel}	—	Х
$\Delta R(\text{track}, \text{jet})$	—	Х
Track $p_{\text{T,rel}}$ ratio	—	Х
Track distance	—	Х
Track decay length	—	Х
Summed tracks <i>E</i> _T ratio	—	Х
ΔR (summed tracks, jet)	—	Х
First track 2D IP significance above c threshold	—	Х
Number of selected tracks	—	Х
Jet <i>p</i> _T	—	Х
Jet η		Х

<u>JINST 13 (2018) P05011</u>

Backup

Boosted Decision Trees (BDT)

<u>CERN-OPEN-2007-007</u>

 $t\bar{t}$ in PbPb: BDT is trained with kinematics of the two leading- p_T leptons.

 p_T of leading lepton, $p_T(\ell_1)$ Symmetry in lepton- p_T 's, $\frac{p_T(\ell_1) - p_T(\ell_2)}{p_T(\ell_1) + p_T(\ell_2)}$

Solution Dilepton system $p_T, p_T(\ell \ell)$

Solution System pseudorapidity, $|\eta(\ell \ell)|$

Solute azimuthal separation in ϕ of the two leptons, $|\Delta \phi(\ell \ell)|$

Sum of absolute η 's of leptons, $\sum |\eta_i|$

<u>CMS-PAS-HIN-19-001</u>

