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Motivation Introduction

Parton-level Monte Carlo generators

Behind most predictions for LHC phenomenology lies the numerical
computation of the following integral:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

→ f (x , q): Parton Distribution Function

→ |M|: Matrix element of the process

→ {pn}: Phase space for n particles.

→ J : Jet function for n particles to m.
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Motivation Introduction

Parton-level Monte Carlo generators ingredients:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

The integrals are usually computed
numerically using CPU-expensive Monte
Carlo generators.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!
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Motivation Introduction

ATLAS projected CPU usage
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Motivation The parallelization journey

CPU parallelization

For years adding more
power/transistors was enough

Then adding more cores...

... but even that is not
enough anymore.

From H. Sutter’s

“The Free Lunch Is Over”
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Motivation The parallelization journey

Just add more cores
Wait, not so fast...

Plus...

7 Power consumption

7 Race conditions

7 The memory wall

7 Moore’s law still applies

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow Milano Ph Seminar 7 / 32



Motivation The parallelization journey

Why move to hardware accelerators

X Better performance

X Better efficiency

X GPUs are now as capable (and
competitive!) as CPUs for many
operations

0 20 40 60 80 100 120
GFLOP / Watt

Nvidia A6000

RTX 3080

RTX 2080

AMD Ryzen Threadripper 3990X (64 cores)

Intel Core i9-10900K (10 cores)

GFLOPS (FP32) per Watt
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Motivation The parallelization journey

Hardware accelerators
Or how I learned to stop worrying and love the Central Graphical Processing Unit

GPUs are designed to perform many operations at once in parallel:

7 Each “worker” in the GPU must be doing the same as all its siblings

7 Cannot share data during the calculation1

7 in summary: only useful for calculations where each event is
independent of all other events and...

Wait...

1Not in the CPU sense anyway
Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow Milano Ph Seminar 9 / 32



Motivation How can we do better

GPU computing

Monte Carlo simulations are highly parallelizable, which make them a
great target for GPU computation.

0 10 20 30 40 50
Time (s)

2 cores

4 cores

8 cores

16 cores

Titan V

RTX 2080 Ti

Float-64 performance comparison for a MC integral
Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Example: n-dimensional
gaussian function

I =

∫
dx1 . . . dxn e

x2
1+···+x2

n

Every event is independent of all
other events!

GPU computation can increase the performance of the integrator by more
than an order of magnitude.
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Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.
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Motivation How can we do better

Act in parallel: CPU

The way we do Monte Carlo calculations in CPU already allows for a
certain degree of parallelization

I =
1

N

∑
f (~xi )

Where the form of the function f (~x)
might be arbitrarily complicated
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Motivation How can we do better

Act in parallel: GPU
What can we do then in these machines?

We need a completely
different machine, which
takes a different input
and a different output

All operations must act
on all inputs at once!
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Motivation How can we do better

Act in parallel: GPU
What can we do then in these machines?

We need a completely
different machine, which
takes a different input
and a different output

All operations must act
on all inputs at once!

So far so good, but how can we do it?
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Motivation How can we do better

Lack of Tools

Running on a CPU:

Worry only about what you are
instered in (i.e., the phyisical process)

There exists a complete toolset for
producing results.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!
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Motivation How can we do better

Lack of Tools

Running on a CPU:

Worry only about what you are
instered in (i.e., the phyisical process)

There exists a complete toolset for
producing results.

X PDF providers

X Phase space generators

X Integrator libraries...

Cuba

RAMBO

fastjet

madgraph

LHAPDF

Root

result!
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Motivation How can we do better

Lack of Tools

Running on a GPU:

There is no such toolset yet

so it needs to be written from
scratch

?????

?????

?????

?????

?????

?????

result!
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Motivation Tensors, tensors everywhere

Filling up the box

1 A phase space generator which takes an array of (n events) random
numbers and returns (n events) an array of phase space points

2 A tool for the evaluation of Matrix Elements (at tree or loop level)
parallelized on the received phase space points.

3 A PDF interpolation tool to generate luminosities in parallel for many
events X

4 An integrator framework able to send and receive batches to and from
the GPU X

5 Analysis tools, experiment simulation, jet algorithms...
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The Flow suite: VegasFlow, PDFFlow, and more The what, the where and the how

Filling up the box: VegasFlow and PDFflow

The pdf and vegas-flow libraries
focus on speed and efficiency for
both the computer and the developer

- Python and TF based engine

- Compatible with other
languages: Cuda, C++

- Seamless CPU and GPU
computation out of the box

- Easily interfaceable with
NN-based integrators

Source code available at:
github.com/N3PDF/VegasFlow

github.com/N3PDF/PDFFlow

VegasFlow

?????

?????

madgraph?

PDFFlow

?????

result!
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The Flow suite: VegasFlow, PDFFlow, and more The what, the where and the how

Easy to use

Minimal changes to the external interface can achieve enormous speed ups.

Create PDF

query PID, (x ,Q2) point

xfxQ2()

fa (x ,Q2) �

Figure: LHAPDF6

Create PDF

query PID, array x , array Q2

xfxQ2()

~fa (~x , ~Q2)

Figure: PDFFlow

The heavy lifting is done “automagically” internally in PDFFlow
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The Flow suite: VegasFlow, PDFFlow, and more The what, the where and the how

Usability status

The goal

The developer writes the code once (for instance, the matrix element for
the process they are interested in) and it can automatically be used for
both GPU and CPU.

While perfectly possible, it will take some times for the tools to be widely
used. The ecosystem today available to the particle physics comunity is far
from being GPU-ready and it will take years to be truly plug & play.

The workarounds

We have thus focused on compatibilities with existing code and tools.
PDFFlow python and C interfaces follow a structure very similar to
LHAPDF while VegasFlow is compatible with integrands written in Cuda,
C++ or regular python.
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The Flow suite: VegasFlow, PDFFlow, and more Extending the possibilities

Interface with Madgraph’s matrix generation
work in collaboration with M. Zaro

A very powerful tool in the
phenomenology’s toolbox is the
Madgraph. Among its many features
it can automatically generate
partonic cross sections.

X Can we generate them
automatically in a tensorized
form?

X Yes, we can!

VegasFlow

?????

?????

?????

PDFFlow

?????

result!
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it can automatically generate
partonic cross sections.

X Can we generate them
automatically in a tensorized
form?

X Yes, we can!

VegasFlow

?????

?????
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PDFFlow

?????
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The Flow suite: VegasFlow, PDFFlow, and more Extending the possibilities

Madflow Alohaflow mg5MC@NLOwVegasFlow NIP

1 Use Madgraph to generate all necessary channels

2 Output the calculation in a way that can be run in parallel

3 Write a wrapper to join all pieces: phase space generator
(RamboFlow?), VegasFlow, PDFFlow, ...

4 Run the process in a GPU!
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The Flow suite: VegasFlow, PDFFlow, and more Extending the possibilities

Preliminary Results

Exact same ME and
feynman diagrams X

“Hand-made” phase
space 7

Perfect compatibility X 0 50 100 150 200 250 300 350 400
pt [GeV]

0

5

10

15

20

25

d
/d

p t
 [f

b/
Ge

V]

Cross section differential on pt for g g -> t t
Madgraph
VegasFlow
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Benchmarks and examples

Benchmarks and examples

To wrap it up, we will see some examples and benchmarks that show how
the parallelization (and tensorization!) of calculations can speed them up
enormously.

X Parallel PDF interpolation

X LO calculations, CPU vs GPU

X NLO caluculations, CPU vs GPU

X Pineapple and Dask integration

X + some example code
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Benchmarks and examples PDF interpolation

LHAPDF vs PDFFlow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t[
s]

PDFflow - LHAPDF perfomances

PDFFlow: i9 9980XE (CPU)

PDFFlow: Titan V (GPU)

LHAPDF (CPU)

1 2 3 4 5 6 7 8 9 10

Number of (x,Q) points drawn [×105]

101

102

R
at

io
to

L
H

A
P

D
F

10−12 10−10 10−6 10−2

x

10−15

10−13

10−11

10−9

10−7

10−5

10−3

|f p
−
f l
|

|f l
|+

ε

NNPDF31 nlo as 0118/0, flav = 1

Q = 1.65× 100

Q = 1.70× 100

Q = 4.92× 100

Q = 1.00× 102

Q = 1.00× 103

Q = 1.00× 104

Q = 1.00× 105

Q = 1.00× 106

Q = 2.00× 106

Interpolation in x for fixed q.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow Milano Ph Seminar 23 / 32



Benchmarks and examples PDF interpolation

LHAPDF vs PDFFlow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t[
s]

PDFflow - LHAPDF perfomances

PDFFlow: i9 9980XE (CPU)

PDFFlow: Titan V (GPU)

LHAPDF (CPU)

1 2 3 4 5 6 7 8 9 10

Number of (x,Q) points drawn [×105]

101

102

R
at

io
to

L
H

A
P

D
F

101 103 105 107

Q

10−15

10−13

10−11

10−9

10−7

10−5

10−3

|f p
−
f l
|

|f l
|+

ε

NNPDF31 nlo as 0118/0, flav = 1

x = 1.0× 10−10

x = 1.0× 10−9

x = 1.1× 10−9

x = 5.0× 10−7

x = 1.0× 10−6

x = 1.0× 10−4

x = 1.0× 10−2

x = 5.0× 10−1

x = 9.9× 10−1

Interpolation in q for fixed x .

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow Milano Ph Seminar 23 / 32



Benchmarks and examples LO and NLO calculations

VegasFlow Vs plain Madgraph LO

For Leading Order calculations the advantages are immediately visible

0 10 20 30 40 50
Time (minutes)

Madgraph
MG5_aMC@NLO

VegasFlow
Running on CPU

VegasFlow
GPU: Titan V

VegasFlow
GPU: RTX 2080 Ti

VegasFlow
GPU: Titan V and RTX 2080 Ti

LO single top @ 8 TeV, target uncertainty 0.014 pb 
 Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Figure: Plain Madgraph Vs VegasFlow
implementation

- Port of CPU (C++ based) code,
no GPU-specific optimization.

- Phase Space, spinors, cuts... all
done ‘the old way”

X There’s even room for
improvement with GPU-specific
code!
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Benchmarks and examples LO and NLO calculations

VegasFlow Vs plain Madgraph LO

For Leading Order calculations the advantages are immediately visible
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Figure: VegasFlow implementation in
different devices

- Port of CPU (C++ based) code,
no GPU-specific optimization.

- Phase Space, spinors, cuts... all
done ‘the old way”

X There’s even room for
improvement with GPU-specific
code!

And what about NLO?
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Benchmarks and examples LO and NLO calculations

VegasFlow for NLO calculations

Still can’t achieve an order of magnitude for NLO. But it is already better!

- Same caveats as before → no
GPU-specific optimization on
the phase space, cuts or
subtraction terms

- Proof-of-concept, not a full
parton-level MC simulator.

X Great potential for accelerating
fixed order calculations. Figure: NNLOJET+LHAPDF vs

VegasFlow+PDFFlow
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Benchmarks and examples LO and NLO calculations

PineAPPL

The grid filling tool PineAPPL (Carrazza, Nocera, Schwan, Zaro,
hep-ph/2008.12789) addresses the problem of generating grids to produce
predictions for generic set of PDFs.
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The generation of such grids is a common use of Monte Carlo generators.
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Benchmarks and examples LO and NLO calculations

Dask

Another very common situation for users of Monte Carlo tools is the
possibility of running in a distributed system.
In VegasFlow this task is facilitated by the implementation of a dask

interface.

>>> from dask_jobqueue import SLURMCluster

>>>

>>> cluster = SLURMCluster(queue="<q>",

>>> project="<p>", cores=4, memory="2g")

>>>

>>> integrator.set_distribute(cluster)

>>> res = integrator.run_integration(n_iter)

Cluster systems not included in the dask library should be easy to
implement following the same internal logic.
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Benchmarks and examples How to

Open source for HEP

Where to obtain the code

Both VegasFlow and PDFFlow are open source and can be found at the
N3PDF organization repository github.com:N3PDF

How to install

Can be installed from the repository or directly with pip:

~$ pip install vegasflow pdfflow

Documentation

The documentation for these tools is accessible at:
VegasFlow: vegasflow.rtfd.io

PDFFlow: pdfflow.rtfd.io
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Benchmarks and examples How to

Run a simple integrand

>>> @tf.function

>>> def complicated_integrand(xarr, **kwargs):

>>> return tf.reduce_sum(xarr, axis=1)

>>> from VegasFlow.vflow import VegasFlow

# Instantiate the integrator

# limit the number of events to be computed at once

# (hardware dependent!)

>>> n_dim = 10

>>> n_events = int(1e6)

>>> integrator = VegasFlow(n_dim, n_events, events_limit = int(1e5))

# Register the integrand

>>> integrator.compile(complicated_integrand)

# Run a number of iterations

>>> res = integrator.run_integration(n_iter = 5, log_time = True)

Result for iteration 0: 5.0000 +/- 0.0009(took 0.47029 s)

Result for iteration 1: 5.0006 +/- 0.0003(took 0.32042 s)
.
.
.

Final results: 4.99995 +/- 8.95579e-05
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Benchmarks and examples How to

Get PDF values in parallel

>>> from pdfflow import mkPDF

>>> pdf = mkPDF("NNPDF31_nlo_as_0118/0")

# Can be used within python code

>>> pdf.py_xfxQ2([21, 1, 2], [0.45], [91.**2]).numpy()

array([0.01829599, 0.0357393 , 0.14706923])

>>> pdf.py_xfxQ2([21, 1, 2], [0.45], [91.**2])

<tf.Tensor: shape=(3,), dtype=float64, numpy=

array([0.01829599, 0.0357393 , 0.14706923])>

# But it can also be used within a TensorFlow function

>>> x_arr = tf.constant([0.5, 0.2])

>>> q2_arr = tf.constant([91.**2, 173.**2])

>>> pdf.xfxQ2([1,21], x_arr, q2_arr)

<tf.Tensor: shape=(2, 2), dtype=float64, numpy=

array([[0.01969848, 0.00930697],

[0.21846276, 0.2335565 ]])>

>>> pdf.alphasQ2(float_me([91.**2, 173.**2]))

<tf.Tensor: shape=(2,), dtype=float64, numpy=

array([0.11803883, 0.10762763])>
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Conclusions The end

Summary

GPU computation is increasingly gaining traction in many areas of
science but it is still not heavily used in particle physics
phenomenology.

→ Being competitive with CPU for MC simulations.

→ Efforts in that direction

X VegasFlow and PDFFlow provide a framework to run in any device.

X Easy to use and interface.

X Easy implementation of new-generation or NN-based integration
algorithms.

Where to obtain the code

VegasFlow and PDFFlow are opensource and available at
github.com:N3PDF/pdfflow and github.com:N3PDF/VegasFlow
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Conclusions The end

Thanks!
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Backup

Benchmark on different GPUs
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GPU performance
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Backup

Benchmark on different CPUs
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