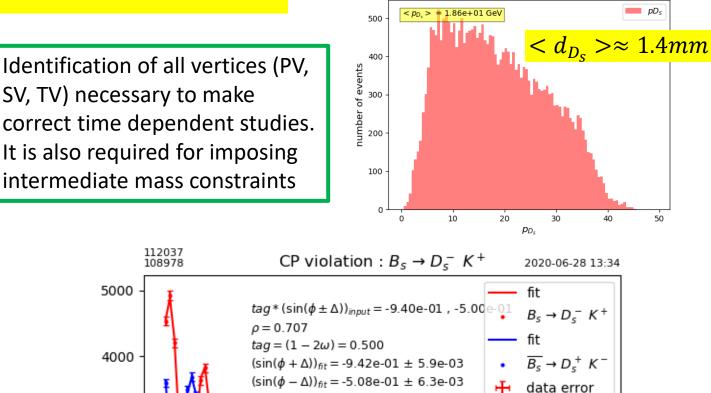

Vertexing : An indispensable tool for precision Physics

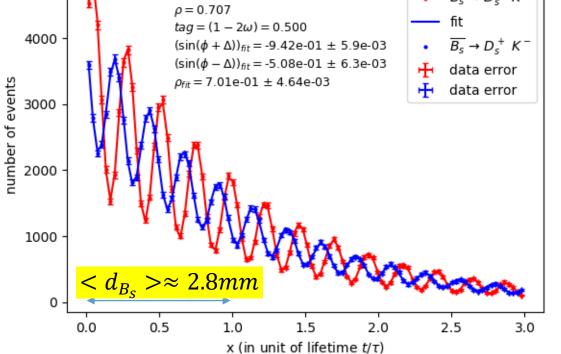
R. Aleksan Vertexing 10/2/2021

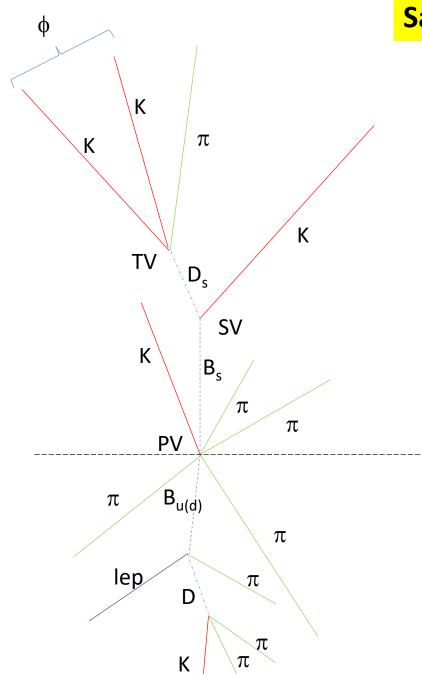

- Time dependent measurements (e.g. CP violation studies...)
 - B flight distance measurement
 - \circ B-Tagging
- Electroweak and Higgs Physics
 - \circ b-tagging, c-tagging, τ -tagging
- Rare decays
 - $\circ~$ Limiting the combinatorial background
 - Reconstruction of final states with neutrinos

•

Time dependent measurements

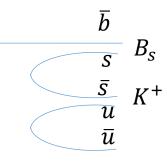
Resolution on B-flight distance < 30 \mu m very useful to have negligible smearing (minimizing deconvolution errors)


2021-02-06


pD.

50

40


entries:25607.0 $e^+e^- \rightarrow Z \rightarrow B_c \rightarrow D_c k \rightarrow K^+K^-\pi^+K^-$

Same and Opposite side tagging

Same side tagging done using the identification of most energetic K from primary vertex .

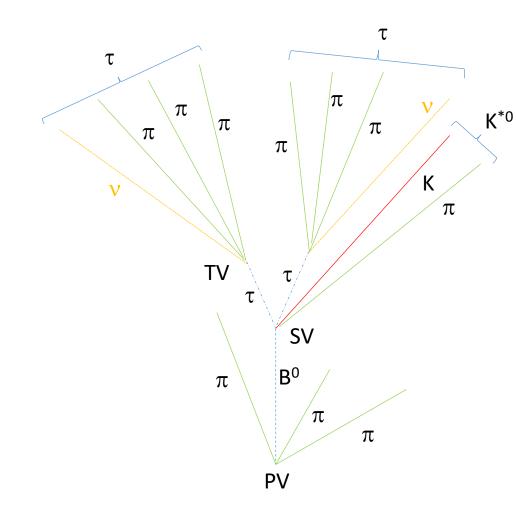
Kaon is the first fragmentation particle taking largest fraction of remaining energy Its sign same as b quark

Opposite side tagging is greatly facilitated by reconstructing the topology. It eases the identification of

- prompt lepton from B
- secondary lepton and K from D
- Overall weighted charge of the hemisphere

Electroweak and Higgs Physics

Development of powerful flavor tagging essential for precision Higgs and Electroweak physics

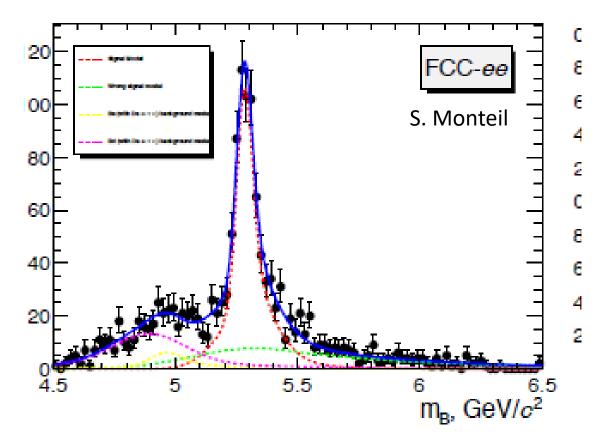

□ $H \rightarrow b\bar{b}, c\bar{c}, \tau^+\tau^-$ have different topologies in which vertexing plays an important role In general, main features :

- $b\overline{b}$: PV, 2SV, 2TV with larger flight distances, higher mutiplicity, multiple kaons,
- $c\bar{c}$: PV, 2SV with medium flight distances, lower mutiplicity , multiple kaons, ...
- $\tau^+\tau^-$: 2SV with small flight distances, lower multiplicity, small number of kaons, ...
- \Box Measurement of $V_{cb} @ e^+e^- \rightarrow W^+W^-$ with $W^+ \rightarrow c\overline{b}$

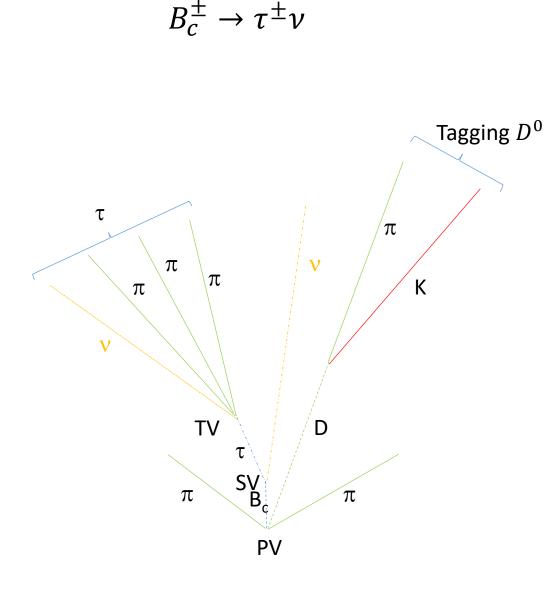
Present error $\delta(V_{cb}) = (42.26 \pm 0.58) \times 10^{-3} (i.e. \ \delta(V_{cb})/V_{cb} = 1.4\%)$

Very clean (no decay constant uncertainty f_{B_c}) compared to $B_c \rightarrow \tau \nu$... but very challenging $W^+ \rightarrow u\bar{d} : c\bar{s} : u\bar{s} : c\bar{d} : c\bar{b} \approx 1 : 1 : 0.05 : 0.05 : 0.0019$ If 10⁸ W produced@FCC, 2 10⁵ $W \rightarrow c\bar{b}(b\bar{c})$, potential statistical error $\delta(V_{cb})/V_{cb} = 0.13\%$!

e.g. $B^0 \to K^{*0} \tau^+ \tau^- \to (K^+ \pi^-)_{K^{*0}} (\pi^+ \pi^- \pi^+)_{\tau} (\pi^- \pi^+ \pi^-)_{\tau}$


Two missing neutrinos but possible to reconstruct B, thanks to the knowledge of B and τ 's directions (4 vertices)

Rare decays


Very interesting mode for probing lepton unviversality By comparing to $B^0 \rightarrow K^{*0}\mu^+\mu^-$ and $B^0 \rightarrow K^{*0}e^+e^-$

Superb resolution on PV, SV, TV fundamental good B mass resolution for background suppression.

 τ flight distance is rather short ($c\tau \approx 90 \mu m$) error on τ direction generates larger B-mass resolution

Rare decays

$$\begin{split} &Br\left(B_c^{\pm} \to \tau^{\pm} \nu\right) \approx 5\%\\ &\frac{N\left(B_c^{\pm}\right)}{N\left(B_u^{\pm}\right)} \leq 10^{-3}\\ &\Rightarrow &\approx 4 \cdot 10^7 \ B_c^{\pm} \to \tau^{\pm} \nu\\ &< p_{\tau} > \approx 19 \ GeV, < d_{\tau} > \approx 0.9mm \end{split}$$

Two missing neutrinos and no information on SV but some interesting features to reduce background:

- Tagging b in opposite side
- Same side tagging with D
- B_c flight very short $(c\tau \approx 150 \mu m)$ compared to $B^+ \rightarrow \overline{D^0} \tau^+ \nu$ or $B^0 \rightarrow D^- \tau^+ \nu$ (very dangerous background (> x 10²)

Vertexing is a vital tools in variaty of precision measurements @ FCC

Let's get to work