

Conceptual Design Review of R2D2 2 - Magnetic Design and Preliminary Protection -

https://indico.cern.ch/event/1003865/

TM & © Lucasfilm Ltd. All Rights Reserved

CEA: V. Calvelli, E. Rochepault, M. Durante, H. Felice, P. Mallon, P. Manil, G. Minier, G. Maitre, B. Prevet, S. Perraud, F. Rondeaux CERN: S. Izquierdo Bermudez, J.C. Perez, D. Tommasini, J. Fleiter, H. Felice 08/03/2021

Expected Critical Current Density Curves

See presentation 4

Expected Parameters	HF	LF	
# strands	21	34	
Ø strands	1.1 mm	0.7 mm	
Pitch angle	16.5 deg	16.5 deg	10
Transposition pitch	85.0 mm	85.0 mm	(/ /mm
Cu/Sc ratio	0.8	2	0
Insulation	0.15 mm	0.15 mm	
Expected Dimensions (reacted & insulated)	2.36 x 13.04 mm	1.61 x 13.04 mm	

Same geometric dimensions Different J_c

FROM F2D2 v4.8.15...

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

0.0

Y [mm]

50.0

60.0

70.0

COIL 4.8

- Bore radius = 25.0 mm
- Min post radius $R_i = 13.69$ mm
- R_i/w_x^{HF} = 6.9 (ECC Specs)

30.0

40.0

20.0

10.0

80.0

X [mm]

....To R2D2 v4.8.15

GOAL

- Lower the risk
- Study the grading

HOW (part 1)

- Racetrack single layer
- Coil 10HF 22LF
- Same F2D2 structure

R2D2 v4.8.15: FIRST RESULTS & MAIN ISSUES

V. Calvelli

R2D2 CDR March 2021

R2D2 v 6.14.R2: 2D DESIGN CRITERIA

Optimization Criteria 2D:

- A. Ratio $\frac{R_{inner}}{wx_{HF}} = 6.9 \rightarrow \text{Ratio} \frac{R_{inner}}{wx_{HF}} = 10$
- B. Instability (?) on the cables
 → 20% cable performance degradation to increase the RRR J_c = @1000A/mm² 4.2 K 16 T
 → First tests @ 4.2 K and after 1.9 K
- C. LL margin = 14% too risky
 → Optimized Grading @ 4.2 K LL margin = 20%
- D. Max hotspot temperature ~ 350 K (See presentation on quench)
- E. Grading not optimized
 → change of the coil pack
- F. Dedicated Mechanical structure
 → iron adapted for the mechanics and not for field quality

R2D2 cable 1000 A/mm2 @ 16T 4.2 K FCC Fit

	Nominal	SS
I	13772 A	17215 A
LL margin HF / LF	20.0% / 20.45%	0.0 % / 0.72%
B @ (0,0)	10.42 T	12.46 T
B peak HF	11.82 T	14.27 T
B peak LF	7.68 T	9.49 T
Energy density $\varepsilon_{4.2K}$	474 KJ/m	725 KJ/m
Energy mass density	15.9 KJ/kg	23.8 KJ/kg
Inductance	4.79 mH	4.55 mH
J _{Cu} HF / LF	1472 / 1508 A/mm ²	1853 / 1886 A/mm ²
Fx HF / LF	1698 / 112 kN/m	2497 / 61 kN/m
Fy HF / LF	-469 / -752 kN/m	-744 / -1101 kN/m
E/L HF / LF	41 / 77 kJ/m	61 / 114 kJ/m

Consequences due to J_{Cu} shown after Lorentz Forces impact in presentation 3

V. Calvelli

Grading optimization

 $\Delta y \ midplane = 2.5 \ mm$

Operative temperature = 4.2 K

Accessible area for measurements (~30 X 5 mm) \rightarrow B = 10.42 T

R2D2 cable 1489 A/mm2 @ 16T 1.9 K FCC Fit

	Nominal	SS	
I	15055 A	18819 A	
LL margin HF / LF	20.9% / 20.0%	0.9 % / 0.0%	
B @ (0,0)	11.15 T	13.29 T	
B peak HF	12.69 T	15.23 T	
B peak LF	8.32 T	10.21 T	
Energy density $\varepsilon_{1.9K}$	553 KJ/m	818 KJ/m	
Energy mass density	18.43 KJ/kg	27.25 KJ/kg	-
Inductance	4.69 mH	4.32 mH	
J _{Cu} HF / LF	1627 / 1667 A/mm ²	2034 / 2084 A/mm²	
Fx HF / LF	1978 / 97 kN/m	2920 / 25 kN/m	
Fy HF / LF	-683 / -1101 kN/m	-894 / -1447 kN/m	
E/L HF / LF	56 / 106 kJ/m	71 / 133 kJ/m	

Consequences due to J_{Cu} shown after Lorentz Forces impact in presentation 3

V. Calvelli

R2D2 CDR March 2021

Same geometry implemented in OPERA

R2D2 v 6.14.R2 – 3D OPTIMIZATION CRITERIA & BENDING CONSTRAINS

Optimization Criteria 3D:

- A. B_{peak} on the straight length for HF and LF
- B. Total length = 1300 mm + 200 mm exit leads
- C. Turns distributions in spacers must minimize the $\mathsf{B}_{\mathsf{peak}}$
- D. Iron is adapted to minimize B_{peak} in the exit leads

Radii

- Hard-way (validated) = 450 mm (See presentation 5)
- Easy-way leads = 85 mm (Fresca 2 value)

Conservative, but it is a delicate zone

R2D2 v 6.14.R2 – OVEN COMPATIBILITY AND COIL LENGTH

Oven homogeneous length:

> $-2 \text{ K} \le \Delta \text{T} \le 2 \text{ K} \rightarrow 1500 \text{ mm}$ by specs

R2D2 length:

- > 1300 mm head to head
- 1500 mm in total (200 mm or more for the Nb₃Sn exit leads)

Exit Leads:

- Chicane separation from coils = 6 mm (for insulation and mechanics)
- Exit leads separation from coils = 6 mm (for insulation & instrumentation, same value as Y-Filler)

Exit leads lengths are fixed by those parameters + radii

R2D2 v 6.14.R2 – 3D OPTIMIZATION

R2D2 v 6.14.R2 – 3D OPTIMIZATION

Cea

Cea

Ces


```
DE LA RECHERCHE À L'INDUSTRI
```

R2D2 v 6.14.R2 – 3D MAGNETIC RESULT SUB-COIL HF


```
DE LA RECHERCHE À L'INDUSTRI
```

R2D2 v 6.14.R2 – 3D MAGNETIC RESULT SUB-COIL LF

CONCLUSIONS FOR THE MAGNETIC DESIGN

R2D2 GOALS:

- Demonstrate the grading with the cable geometries forecast for FCC
- Validate the conductors behaviour especially at high current
- Validate the quench behaviour in critical condition
- Possible to reach ~10.5 T on the main axis

SMALL MAGNET, BUT NOT AN EASY ONE:

- Small margins on the LF sub-coil due to grading
- Instability issue may arise (conductors caracterization needed)
- Exit-leads are complex, require space and play a main role in the magnet performance
- Very high current -> protection must be mastered and it drives the performances of the magnet

Criteria	F2D2	R2D2
Max Hot Spot Temperature	350 K	350 K
Max Voltage btw layers	1200 V	1000 V
Max Voltage to ground	1200 V	1000 V
Max quench detection delay	20 ms	20 ms
Max quench protection delay	20 ms	20 ms
Detection voltage	10 mV	10 mV
Protection Circuit 1st Option	CLIQ+Heaters	CLIQ+Heaters+ Rdump
Protection Circuit 2nd Option	Heaters	CLIQ+Heaters+ Rdump
Max Thermal Stress allowed	Same as MECH	Same as MECH

The conservative approach adopted for R2D2 is maintained also for protection

R2D2 – HOT SPOT CRITERIA

$I_{R2D2} \sim 150\% I_{F2D2} \rightarrow$ protection has a key role in designing

How to rapidly evaluate the impact of protection on the design? With the spreadsheet developed for ECC by T. Salmi, with the dump resistance option

F2D2

The contribution of dimensionality (Wilson – Superconducting

One of the criteria in the magnetic design

Max hotspot temperature ~ 350 K

Approximative evaluation, but it can give a direction in the design

The hot spot criteria has been used from v4.8.15 to v6.13.R1 to understand the best performance zone

R2D2 v 6.14.R2 – PERFORMANCES @4.2 K & ULTIMATE WP

	Nominal	SS	Ultimate WP
I ₀	13772 A	17215 A	16500 A
LL margin HF / LF	20.0% / <mark>20.45%</mark>	0.0 % / 0.72%	4.15 % / <mark>4.50 %</mark>
B @ (0,0)	10.42 T	12.46 T	11.98 T
B peak HF	11.82 T	14.27 T	13.67 T
B peak LF	7.68 T	9.49 T	9.05 T
Energy density $\varepsilon_{4.2K}$	474 KJ/m	725 KJ/m	649 KJ/m
Energy mass density	15.9 KJ/kg	23.8 KJ/kg	21.3 KJ/kg
Magnetic length	785 mm	785 mm	785 mm
Inductance @ I_0	4.79 mH	4.55 mH	4.63 mH
Fx HF / LF	1698 / 112 kN/m	2497 / 61 kN/m	2321 / 74 kN/m
Fy HF / LF	-469 / -752 kN/m	-744 / -1101 kN/m	-683 / 1101 kN/m
E/L HF / LF	41 / 77 kJ/m	61 / 114 kJ/m	56 / 106 kJ/m
J _{Cu} HF / LF	1472 / 1508 A/mm ²	1853 / 1886 A/mm ²	1783 / 1827 A/mm²
Hotspot HF / LF	104 K / 141 K	260 K / 450 K	210 / 350 K

The Ultimate Working Point is the one where the magnet can operate safely

R2D2 v 6.14.R2 – PERFORMANCES @1.9 K & ULTIMATE WP

	Nominal	SS	Ultimate WP
1	15055 A	18819 A	16500 A
LL margin HF / LF	20.9% / 20.0%	0.9 % / 0.0%	12.85 % / 11.3 %
B @ (0,0)	11.15 T	13.29 T	11.98 T
B peak HF	12.69 T	15.23 T	13.67 T
B peak LF	8.32 T	10.21 T	9.05 T
Energy density	553 KJ/m	818 KJ/m	649 KJ/m
Magnetic length	785 mm	785 mm	785 mm
Fx HF / LF (kN/m)	1978 / 97	2920 / 25	2321 / 74
Fy HF / LF (kN/m)	-683 / -1101	-894 / -1447	-683 / 1101
E/L HF / LF (kJ/m)	56 / 106	71 / 133	56 / 106
Inductance	4.69 mH	4.32 mH	4.63 mH
J _{cu} HF / LF (A/mm²)	1627 / 1667	2034 / 2084	1827 / 1783
Hotspot HF / LF	135 K / 203 K	580 K / 1192 K	233 K / <mark>350 K</mark>

Not possible to go to SS

Lorentz Forces impact in presentation 3

V. Calvelli

Protection is the main issue for R2D2 due to the high current density in the copper

- Similar MIITS of F2D2 if it operates at 4.2 K
- It seems not possible to operate at SS 1.9 K
- > Detailed simulations with COMSOL are ongoing to understand better its behaviour

R2D2 NEW GOAL : being a magnet to test

- > The quench behaviour in simple graded coils and the impact of the departing point
- > The quench in very different conditions without putting at risk the magnet
- Push-up the limits in high-current
- Test the technologies (heaters, CLIQ, ...) and especially their response rapidity (20 ms) towards FCC goals
- Collaboration with Tampere University started

V. Calvelli

BACKUP SLIDES

www.cea.fr

For F2D2:

THE MAGNETIC MODEL

Comparison analysis with OPERA (reference model)

- Very good agreement on Bx, By
- Same LL margin for both cables
- Different magnetic energy $\Delta E \sim 12\%$

Values for Bx, By directly calculated by COMSOL Differential inductance imported by OPERA

Poly.

Material properties homogeneization and model for current redistribution inside every turn

THE THERMAL MODEL

2D heat equation by COMSOL + 1D Axial heat propagation

$$\frac{\dot{Q}}{A_n} = \frac{1}{A_n} \left[\frac{T_{n-1} - T_n}{L_{LE} \left(\frac{1}{k_{n-1}A_{n-1}} + \frac{1}{k_n A_n} \right)} - \frac{T_n - T_{n+1}}{L_{RE} \left(\frac{1}{k_n A_n} + \frac{1}{k_{n+1} A_{n+1}} \right)} \right]$$
Heat conduction / cable surface
Connections
Layer Jumps
Joints

232 thermal connections

THE ELECTRIC MODEL

The circuit implemented

$$\begin{cases} V(t) = R(t)I(t) - L(I,t)\frac{dI}{dt} \\ R(t) = \int_{z} \left(\iint_{S} \frac{1}{\rho(B,T,t)} dS \right)^{-1} dz \\ L(I,t) = \frac{2U(t)}{I^{2}(t)} \end{cases}$$

Differential Inductance L(I)

THE AC LOSSES

Internal core in copper Multifilamentary composite part Outer sheath in copper

Strand geometry

Strands of a Rutherford cable

A. Devred. T. Ogitsu, Influence of eddy currents in superconducting particle accelerator magnets using Rutherford type cables, 1995, pp. 1-30.

$$P_{intra}^{k} = 2 * N_{l} \frac{2\pi (R_{3})^{2}}{\mu_{0}} \left| \frac{dB_{t}(z_{t}^{k})}{dt} \right|^{2} t_{s}^{k}$$

$$t_s^{\ k} = \tau_{core} + \tau_{composite} + \tau_{sheath}$$

$$P_{inter}^{\ k} = 2 \frac{N_l}{L_c^{\ l}} r_c \sum_{p=1}^{N_l} i_p^2$$
$$\sum_{p=1}^{N_l} i_p^2 = \left(i_1^2 S_2 - \frac{1}{N_l r_c} \frac{d\phi_k}{dt} (S_3 - S_2) + (\frac{1}{N_l r_c})^2 \left(\frac{d\phi_k}{dt}\right)^2 (S_4 - 2S_{3+}S_2)\right)$$

L_c^l	Twist pitch of the cable per layer
i _p	Cross-over current for a given current line
N _l	Number of strands per layer
r _c	Cross-over resistance
k	Index of turns

HEATERS MODELLING

Heaters power dissipation modelled as RC circuit

$$\begin{cases} V_0 = 2V\\ C = 20mF\\ R_{HF} = 1\Omega\\ R_{LF} = 0.5\Omega\\ I_0 = 4A \end{cases}$$

$$RC Circuit$$

$$\begin{cases}
I_{heater}(t) = I_0 e^{(-t/_{RC})} \\
V_{heater}(t) = RI(t) \\
P_{heater}(t) = RI^2(t)
\end{cases}$$

16 T Block-Type Nb3Sn Accelerator Dipole Magnet,"

Time=0 ms Surface: Temperature (K) Max/Min Surface: Temperature (K

DE LA RECHERCHE À L'INDUSTRIE

SIMULATION RESULTS WITHOUT AC LOSSES

SIMULATION RESULTS WITH AC LOSSES

TEMPERATURE DIFFERENCE BTW THE MODELS

Page 43

Hypothesis: Adiabatic Regime ٠ Every coil has a quench heater ۲ No quenchback • No Rdump ٠ No Differential inductance • Magnetoresistivity ٠ Detection delay = 20 ms ٠ Heater activation delay = 20 ms• Current decay is slower in COMSOL than in the spreadsheet

Effect due to

- The dimensionality of the problem already forecast in literature (See Wilson – Superconducting magnets)
- Differential inductance

Effects on the hot-spots (the mech structure in COMSOL helps sharing the heat)

Current Decay

 $\begin{aligned} \tau_{analytics} &= 196.5 \ ms \\ \tau_{COMSOL} &= 396.0 \ ms \end{aligned}$

Calculations made using T. Salmi ECC Spreadsheet

Difference due to :

- Dimensionality of the problem
- Geometry
- Starting point (defined in COMSOL)

The contribution of dimensionality and geometry on the hotspots can be seen as if there is a $R_{dump} = \frac{1000 V}{I}$ in the spreadsheet

A 2.5 D FEM multi-physics model has been made with COMSOL for F2D2 and it is ongoing for R2D2

Caracteristics

- It couples 4 different models (MAG, SC, THERM, ELECT)
- It considers:
 - the magneto-resistance
 - the thermal-hall effect
 - the current redistribution inside the conductors
 - AC-losses

Results at 1.05 Inom

- Hot-spot temperature well within the criteria (311K LF, 147K HF vs 350K)
- Voltages are well within the criteria (<600 V vs 1200 V max)

Next step

- Include CLIQ
- Simulate different scenario

A special thanks to L.R. Vieira and Y. Ameslon, our internships who worked on the model.