DE LA RECHERCHE À L'INDUSTRIE

Conceptual Design Review of R2D2

5

- Coil R&D -

https://indico.cern.ch/event/1003865/

CEA: M. Durante, E. Rochepault, V. Calvelli, H. Felice, P. Mallon, P. Manil, G. Minier, G. Maitre, B. Prevet, S. Perraud, F. Rondeaux

CERN: S. Izquierdo Bermudez, J.C. Perez, D. Tommasini, J. Fleiter, H. Felice

09/03/2021

OPEN QUESTIONS REQUIRING R&D

- a. What are the safe bending parameters for coil winding?
- b. How to handle the different cables in graded coils? Winding R&D
- c. How to deal with longitudinal contraction during heat treatment?

Heat treated winding R&D

- d. How to guide and secure the **exits** to the outside of the coils?
- e. How to provide **margins** (geometric, magnetic, mechanical...) to the exit path?
- f. How to perform all the **joints** in a compact area? Splices R&D
- g. How to apply longitudinal pre-stress without damaging the joint area?
- h. What will be the **mechanical behavior** of the coils?
- i. What level of transverse pre-stress to apply?
- j. How to guarantee the **pre-stress** is controlled and reproducible?

Structure R&D

COIL R&D AND TESTS

- Bending tests
 Winding mock up Winding R&D
- Heat treated cable stacks Heat treated winding R&D
- Heat treated short coils
- Splice tests
- Splice mock up

Splices R&D

- Cable and winding characterization:
 - Jc measurements on strands
 - Jc measurements on cable under pressure
 - Thermomechanical measurements on impregnated cable stacks

CABLE FOR TESTS

R2D2 Cable (bare)	# of strands	strand Ø [mm]	Thickness [mm]	Width [mm]	Tp [mm]	Core	Insulation thickness [mm]
R2D2 HF	21	1.1	1.97	12.58	85	non	0.15
R2D2 LF	34	0.7	1.25	12.50			

- F2D2/R2D2 cables not available today
- No existing cable with 1.1 mm diameter strand
- FRESCA2 experience has shown that SC conductor is necessary for bending tests
- For first bending test campaign we looked for superconducting cable with dimensions as near as possible to final ones

Aveilable		Cable (bare)						
Available cables	Strand (N x Ø) [mm]	Width [mm]	Thickness [mm]	Keystone [°]	tp	Core		
DS 11 T SC	40 x 0.7	14.7	1.25	0.791	100	25µm		
SMC 11T	40 x 0.7	14.7	1.25	0	100	non		
QXF	40 x 0.85	18.15	1.525 *	0.55		non		
FRESCA2	40 x 1	20.9	1.82	0	120	non		
Maria Durant	е			R2D2 CDR Marc	h 2021			

- Hardway bending tests SMC 11T bare cable C shape
- Without winding tension

OK

OK

OK

Too many strand popping Cable collapsing

STRAND POPPING

- Hardway bending tests SMC 11T bare cable layer jump S shape
- Without winding tension

OK

OK

OK

Many strand popping

- The minimum hard-way bending radius has been fixed to 450 mm
- Even if bending radius over 300 mm is considered as acceptable (for instance in order to reduce coil end length)

→ Coil Layer jumps or exit jumps

To be confirmed with final R2D2 cables

Easy way bending tests realised with FRESCA2 cable, on winding machine

Winding tension applied

Mandrel radius adapted to FRESCA2 cable thickness in order to have:

1. The same easy-way bending factor (6.95) than for F2D2 cable in F2D2

→ R 12.65 mm

1. A conservative easy-way bending factor of 10 \rightarrow R = 18.2 mm

EWBF 6.95, FRESCA2 bare cable

Winding tension 10kg

- Strand popping, inside and outside the bending
- Cable difficult to fix against the mandrel, tend to relax as soon as the lateral pression is over
- Dishing, deformation of the cable, top and bottom

EWBF 6.95, FRESCA2 insulated cable

Winding tension 10kg

- Strand popping, inside the bending
- Cable difficult to fix against the mandrel, tend to relax as soon as the lateral pression is over
- Dishing, deformation of the cable, top and bottom

EWBF 10, FRESCA2 bare cable

Winding tension 10kg

Strand popping inside the bending, not continuing outside, easy to be replaced

STRAND POPPING INSIDE

EWBF 10, FRESCA2 insulated cable

Winding tension 10kg → 15 kg

- No strand popping
- Dishing

- An easy-way bending factor of 10 seems acceptable
 - → Minimum EW bending radius in the coil of 19.7 mm

To be confirmed with final R2D2 cables

WINDING TESTS (REALIZED FOR F2D2)

HEAT TREATED COILS AND STACKS

Height measurement campaign on cable stacks made from final superconducting cables, heat treated in free and fixed cavities

Short coils made from R2D2 **final** superconducting cables

In parallel thesis by <u>Mahmoud ABDEL HAFIZ</u> on cable dimensional changes during heat treatement

SPLICES R&D

Coil ends handling and splice realisation in a quite crowded region

a. Splices tests

b. Coil Splices Mockup

SPLICES R&D - SPLICE LAYOUT

SPLICES R&D - SPLICES TESTS

Target: Validate splices design, components and splicing procedure

Cable exits

Cable Tinning

Splice soldering

Splice

Mockup of the coil end cables in the reaction mold parts, as they will be at the end of the heat treatment

LF exit modified to allow splice soldering

First LF Splice

Splice

Splice insulation

Insulated splice

Splice final support

First HF Splice

Protection tools of the other cables during splice operation

Coil ends studies Space available for Longitudal prestress (tested elsewhere)?

COIL R&D AND TESTS - STATUS

Bending tests

- Done with SMC and FRESCA2 cable waiting for final
- Winding mock up
- Heat treated cable stacks
- Heat treated short coils
- Splice tests
- Splice mock up

for final cables

Test campaign program to be defined - waiting

- Tools under realization delivery foreseen by the end of March – waiting for SMC cable short lengths for tests
- Cable and winding characterization:
- Test campaign program to be defined - waiting for final cables
- Jc measurements on strands
- Jc measurements on cable under pressure
- Thermomechanical measurements on impregnated cable stacks

DE LA RECHERCHE À L'INDUSTRIE

Spares

BIBLIOGRAPHY ON MINIMUM BENDING RADIUS

	status		Cabl	e (bare)	Easy-way min R	Hard-way min R	
Magnet		Strand N x Ø [mm]	Width [mm]	Thickness [mm]	Keystone [°]	(EWBF) [mm (/)]	(HWBF) [mm (/)]
HQ	Tested	35 x 0.8	15.15	1.437 *	0.75		645 (42.57)
11 T	Tested	40 x 0.7	14.95	1.253	0	8 (6.4)	
QXF	Tested	40 x 0.85	18.15	1.525 *	0.55		793 (43.7)
FRESCA2	In use	40 x 1	20.9	1.82	0	44.7 (24.6)	700 (33.5)
HD2	Tested	51 x 0.8	21.86	1.40	0	11.8 (8.4)	380 (17)
RMM	In fab.	40 x 1	20.9	1.82	0	14 (7.7)	
F2D2 HF	Design	21 x 1.1	12.58	1.97	0	13.69 (6.95)**	
R2D2 HF	Design					19.7 (10)	450 (20)
F2D2 LF	Design	24 × 0.7		1.25	0	20 (16)**	450 (36)
R2D2 LF	Design	34 x 0.7					

easy-way bending factor, $\textbf{EWBF} = R_{\text{EW}}/t_{\text{cbl}}$ hard-way bending factor, $\textbf{HWBF} = R_{\text{HW}}/w_{\text{cbl}}$

*mid-thickness

**from ECC magnetic design

WINDING TESTS (FOR F2D2) – HF CABLE EXITS

F2D2 Options A and B for HF end cable fixing tools and procedure

MESURE À ÉCHELLE DU BRIN (DÉFORMATIONS)

Digital Image Correlation (PhD thesis Mahmoud ABDEL HAFIZ):

- → displacement field of cables as a function of temperature
- → Fundamental approach
- → Not applicable to large coils (for the moment)

