CNN-BASED EVENT FILTERING IN LAR DETECTORS USING PMTs

Marta Babicz^{1,2}, Saul Alonso Monsalve¹, Stephen Dolan¹

 $^{1}CERN$

²The H. Niewodniczański Institute of Nuclear Physics

February 04, 2021

Contact: marta.babicz@cern.ch

PROJECT OVERVIEW

- Within the BNB spill window we expect over three times more cosmic ray backgrounds than neutrino interactions.
- We aim to reduce this background using the information we have available from the PMTs.
- The output is fed into a Convolutional Neural Network (CNN) to discriminate between cosmics and genuine neutrino interactions.

DETAILS

Goal: Reduce the cosmic background in the BNB trigger window using the information we have available from the PMTs.

- Following the ICARUS trigger, PMT signals are considered per pair of PMTs.
- As a position, we take a 3D position of each pair as the point halfway between them.
- We also use the time each pair went above the threshold in the trigger.

- And the first opening of the trigger gate after applying the beam gate coincidence (one time per channel), so first time that channel opened.
- These are then converted into 3D images which are used to train our CNN to separate cosmics from neutrino interactions.

APPLICATION

- The primary goal of this tool is to ace as an offline event filtering tool, reducing the cosmic background prior to further processing using PMT multiplicity and timing information.
- We eventually plan to update the tool to also include PMT waveform information and consider each PMT instead of a pair.

WHY CNN?

- Separating signal events from background events is a well-studied application of machine learning in HEP.
- ICARUS light detection system densely packed in PMTs contains enough detail of interactions and lend itself nicely to image recognition techniques.

- CNNs are designed for image recognition tasks.
- Main concept: apply filters to images to extract features.
- We build images using the information we have available from the PMTs.

NETWORK ARCHITECTURE

- Architecture: 3D ResNet
- Parameters: **33,185,473**
- 20k neutrinos + 45k cosmics for training
- Optimiser: SGD with learning rate of 0.1 (divided by 10 when error plateaus), momentum of 0.9, and decay of 0.0001

- Weighted loss function, with coefficients: class weights: 1.0 (neutrino), 1.4547077197679608 (cosmic)
- Trained on NVIDIA V100 GPU
- We plan to investigate other architectures to be able to use multiple opening times per channel

OVERVIEW New input data used in this study:

The MC data (v09_06_00 *icaruscode*, no overburden, events in two cryostats):

Туре	Tot. number of events	Triggered events
CORSIKA	248600	50697
GENIE BNB (+filter)	50000 (24728 in AV)	24474
GENIE BNB (no filter)	59700	44775

- In the first two samples only two categories of events were considered neutrinos and cosmic background (*binary classification problem*).
- For the non-filtered neutrino sample and cosmic muon events we distinguish three categories of events (*multi-class classification problem*):
 - two kinds of neutrinos: OAV* and IAV**
 - cosmic background events.

OVERVIEW

Real cosmic + BNB beam data:

Run number:	4642
Number of events:	156758
Triggered events:	95984
Data taking time:	14 hours not interrupted
Beam proton intensity:	2.8E12
Beam rep. rate:	3 Hz
Active volume:	East (one cryostat)

Expected events:

- For a proton intensity of 1E12 and 5Hz in 24h:
 - 400 beam events + 400 rock muons
 - 6400 cosmics (0.016 cosmics in 1.6 μ s spill)

For run 4642:

360 beam events / 2400 cosmics (156k spills × 0.016 cosmics)

OVERVIEW OF THE PMT PAIR ACTIVITY (ONE CRYOSTAT)

Better agreement of simulated to real cosmic data - PMTs have been equalised.
 Note: the y-axis is arbitrary in scale (i.e. we don't think the data rate is ~1/2 the MC rate, it's just the shape we want to compare here).

MULTIPLICITY

Multiplicity - is telling us how many PMT pairs surpassed the threshold at least once in one event.

- The excess at low multiplicity for the real cosmic data can indicate the noise contribution or spill over fro light still in the active volume when the trigger window activates.
- After applying a cut on Multiplicity bigger than 7 we observe a better agreement of data to MC samples.

COMPARISON WITH THE SIMULATED COSMIC MUON DATA

 NOpening - the number of times each PMT pair surpasses the trigger threshold per event.*

The number of times each PMT pair opens.

Number of openings after a cut on Multiplicity.

*The time interval we're waiting to check if the new opening happened: 200 ns.

COMPARISON WITH THE SIMULATED COSMIC MUON DATA

 OpeningTime - the time each PMT pair went above the trigger threshold per event.**

 For all the variables: Multiplicity, NOpening and OpeningTime is clear that something is going on at low values.

** The larger Opening time, the later PMT pair crossed the threshold.

RESULTS (BINARY CLASSIFICATION)

- For the training data sample* we used the ratio of cosmics to neutrinos as expected in the real data (SBN-doc-14145-v3):
 - $\blacksquare~\sim~1~\nu$ interaction every 180 spills.
 - ~ 1 over 55 spills, is due to cosmic rays inside the beam spill time window.
- Updates to our methodology:
 - weighting of the loss function (allows more neutrinos in training),
 - running a more sophisticated training,
 - removal of empty cosmic events,
 - training on bigger statistics.

$$\mathscr{E} = \frac{\#v \text{ tagged as } v \text{ in test sample}}{\#v \text{ in test sample}} = 91\%$$
$$\mathscr{P} = \frac{\#v \text{ tagged as } v \text{ in test sample}}{\#events \text{ in test sample}(\mu + v) \text{ tagged as } v} = 66\%$$
$$\mathscr{P}_{before_CNN} = \frac{\#v \text{ in training sample}}{\#events \text{ in training sample}(\mu + v)} = 23\%$$

CNN PREDICTION (BINARY CLASSIFICATION PROBLEM)

- CNN score = the probability of an event having particular label (v or cosmic µ).
- v purity after the CNN increased by a factor of 4.

VISUALISATION OF THE IMAGES USED TO TRAIN OUR CNN

Predicted as neutrino event runNo: 4642, subRunNo: 1, eventNo: 305, prediction: 0.263

Looks like long track with a systematic offset in the times on one wall with respect to another (presumably because the track is closer to one wall). runNo: 4642, subRunNo: 1, eventNo: 63, prediction: 1.000

Looks like it's not through going muon (not so many adjacent PMTs in Z dir. are lit) and that has some hits at totally different times to the others (presumably coming from a second cosmic).

CNN PERFORMANCE W.R.T NEUTRINO ENERGY

- The classification is not biased by neutrino energy.
- Neutrino selection efficiency with respect to the neutrino energy becomes high and flat for $E_{\nu} > 0.5$ GeV.

CNN PERFORMANCE W.R.T OUTGOING LEPTON ENERGY

- The classification is not biased by outgoing lepton energy.
- High and flat neutrino selection efficiency with respect to the outgoing lepton energy.

CNN PERFORMANCE W.R.T OUTGOING LEPTON ANGLE

- The classification is not biased by outgoing lepton angle.
- High and flat neutrino selection efficiency with respect to the outgoing lepton angle.

MC VS REAL DATA (MULTIPLICITY CUT)

v selection efficiencies (M > 7)

19/21

INTRODUCING THREE TYPES OF EVENTS

Considering three types of events: neutrinos out of active volume (OAV), neutrinos in active volume (IAV) and cosmic muons.

CONCLUSIONS AND NEXT STEPS

- New results (from the *binary classification*) show that we are able to reduce cosmic background from ~77% to ~34% whilst maintaining a neutrino interaction selection efficiency within the BNB window of ~91%
- Applying multiplicity cut at M>7 shows better agreement between data and simulation and improves the neutrino selection efficiency.
 Introducing the third type of events shows that:
 - we can trust the network selecting cosmic muons (\mathcal{P}
 - we can trust the network selecting cosmic muons ($\mathcal{P}_{cosmic} = 93\%$),
 - we dramatically reduce the cosmic background (from \sim 77% to \sim 38%) and keep a high v selection efficiency (\sim 81%).
- Further separation of the relatively small remaining background can be done in higher level analyses (we can't expect only PMTs to get us to 100% neutrino purity).
- Further steps:
 - Train the network with additional PMT information,
 - add CRT information,
 - add e^- vs μ tag to the neutrino trees,
 - work alongside with relevant experts to implement improved simulations of the PMT responses.