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PROJECT OVERVIEW

m Within the BNB spill window we expect

over three times more cosmic ray 2ns o
. . . X
backgrounds than neutrino interactions. t i
m We aim to reduce this background -
using the information we have available \__ Deam bunch structure J
from the PMTs. Y

x5 /1sec

. . . 1.6 us
m The output is fed into a Convolutional

Neural Network (CNN) to discriminate
between cosmics and genuine neutrino
interactions.

10 ps (trigger)

Beam spill structure
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DETAILS

Goal: Reduce the cosmic background in the BNB trigger window using
the information we have available from the PMTs.

m Following the ICARUS trigger,
PMT signals are considered per
pair of PMTs.

m As a position, we take a 3D

position of each pair as the
point halfway between them.

FIRST DIGITIZER SECOND DIGITIZER
| |

G2
@X [

= We also use the time each pair ; NN/ b s
went above the threshold in the e R AR
trigger.

m And the first opening of the trigger gate after applying the beam
gate coincidence (one time per channel), so first time that channel
opened.

m These are then converted into 3D images which are used to train our
CNN to separate cosmics from neutrino interactions.
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APPLICATION

m The primary goal of this
tool is to ace as an offline ®
event filtering tool, reducing %000 ®oo
the cosmic background prior ® o00% o
to further processing using +.'2 @ 2e bt
PMT multiplicity and
timing information.

m We eventually plan to
update the tool to also
include PMT waveform
information and consider
each PMT instead of a pair.
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WHY CNN?

m Separating signal events from background events is a well-studied
application of machine learning in HEP.

m ICARUS light detection system - densely packed in PMTs - contains
enough detail of interactions and lend itself nicely to image
recognition techniques.

m CNNs are designed for image recognition tasks.

m Main concept: apply filters to images to
extract features.

= We build images using the information we
have available from the PMTs.
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NETWORK ARCHITECTURE

m Architecture: 3D ResNet
m Parameters: 33,185,473 RESIDUAL

CONNECTION
m 20k neutrinos + 45k ]
cosmics for training

m Optimiser: SGD with |
learning rate of 0.1 (divided
by 10 when error plateaus),

momentum of 0.9, and decay

of 0.0001
m Weighted loss function, with coefficients: class weights: 1.0

(neutrino), 1.4547077197679608 (cosmic)
m Trained on NVIDIA V100 GPU

m We plan to investigate other architectures to be able to use multiple
opening times per channel
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OVERVIEW o
New input data used in this study:

m The MC data (v09_06_00 icaruscode, no overburden, events in two

cryostats):
’ Type ‘Tot. number of events‘Triggered events
CORSIKA 248600 50697
GENIE BNB (+filter) | 50000 (24728 in AV) 24474
GENIE BNB (no filter) 59700 44775

m In the first two samples only two categories of events were considered
neutrinos and cosmic background (binary classification problem).

m For the non-filtered neutrino sample and cosmic muon events we
distinguish three categories of events (multi-class classification
problem):

m two kinds of neutrinos: OAV* and IAV**
m cosmic background events.

* OAV - neutrinos that are out of Active Volume #x IAV - neutrinos inside Active Volume
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OVERVIEW

m Real cosmic + BNB beam data:

Run number: 4642
Number of events: 156758
Triggered events: 95984
Data taking time: 14 hours not interrupted
Beam proton intensity: 2.8E12
Beam rep. rate: 3 Hz
Active volume: East (one cryostat)

Expected events:
m For a proton intensity of 1E12 and 5Hz in 24h:

= 400 beam events + 400 rock muons
m 6400 cosmics (0.016 cosmics in 1.6 s spill)

m For run 4642:
m 360 beam events / 2400 cosmics ( 156k spills x 0.016 cosmics)
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OVERVIEW OF THE PMT PAIR ACTIVITY (ONE CRYOSTAT)

simulation
—— Real data (run 4642
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Better agreement of simulated to real cosmic data - PMTs have been equalised.
Note: the y-axis is arbitrary in scale (i.e. we don't think the data rate is ~1/2 the MC
rate, it's just the shape we want to compare here).
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MULTIPLICITY

Multiplicity - is telling us how many PMT pairs surpassed the threshold
at least once in one event.
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m The excess at low multiplicity for the real cosmic data can indicate the noise contribution

or spill over fro light still in the active volume when the trigger window activates.

m After applying a cut on Multiplicity bigger than 7 we observe a better agreement of data

to MC samples.
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COMPARISON WITH THE SIMULATED COSMIC MUON DATA

m NOpening - the number of times each PMT pair surpasses the

trigger threshold per event.*

| Number of openings M>7
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The number of times each PMT pair opens.

*The time interval we're waiting to check if the new opening happened: 200 ns.

Number of openings after a cut on Multiplicity.
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COMPARISON WITH THE SIMULATED COSMIC MUON DATA

m OpeningTime - the time each PMT pair went above the trigger
threshold per event.**
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m For all the variables: Multiplicity, NOpening and OpeningTime is clear that something is
going on at low values.

**The larger Opening time, the later PMT pair crossed the threshold.
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RESULTS (BINARY CLASSIFICATION)

m For the training data sample* we used the ratio of cosmics to
neutrinos as expected in the real data (SBN-doc-14145-v3):
m ~ 1 v interaction every 180 spills.
m ~ 1 over 55 spills, is due to cosmic rays inside the beam spill time
window.
m Updates to our methodology:
m weighting of the loss function (allows more neutrinos in training),
m running a more sophisticated training,
m removal of empty cosmic events,
= training on bigger statistics.

_ #vtagged asv intest sample

- =91%
#vintest sample ’

3 v tagged asv in test sample — 66%
~ #eventsintest sample(u+v) tagged asv °

#vintraining sample

=239
#teventsintraining sample(p+v) v

'@beforec NN =

* Training and test sample consider triggered events only
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https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=14145

CNN PREDICTION (BINARY CLASSIFICATION PROBLEM)
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m CNN score = the probability of an event having particular label (v or
cosmic ).
= v purity after the CNN increased by a factor of 4.
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VISUALISATION OF THE IMAGES USED TO TRAIN OUR CNN
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Predicted as cosmic background event

Predicted as neutrino event runNo: 4642, subRunNo: 1, eventNo: 63, prediction: 1.000
runNo: 4642, subRunNo: 1, eventNo: 305, prediction: 0.263 . e . .
Looks like it's not through going muon (not so many adjacent
PMTs in Z dir. are lit) and that has some hits at totally
different times to the others (presumably coming from a

Looks like long track with a systematic offset in the
second cosmic).

times on one wall with respect to another (presumably
because the track is closer to one wall).
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CNN PERFORMANCE W.R.T NEUTRINO ENERGY

m The classification is not biased by neutrino energy.

m Neutrino selection efficiency with respect to the neutrino energy
becomes high and flat for E, > 0.5 GeV.
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CNN PERFORMANCE W.R.T OUTGOING LEPTON ENERGY

m The classification is not biased by outgoing lepton energy.

m High and flat neutrino selection efficiency with respect to the
outgoing lepton energy.
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CNN PERFORMANCE W.R.T OUTGOING LEPTON ANGLE

m The classification is not biased by outgoing lepton angle.

m High and flat neutrino selection efficiency with respect to the
outgoing lepton angle.
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MC VS REAL DATA (MULTIPLICITY CUT)
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Test on the simulated data with M > 7

Test on run 4642 with M > 7
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v SELECTION EFFICIENCIES (M > 7)

Nu_E
 osf = High and flat neutrino selection
* 0sf] efficiency for kinematic
"] variables:
0sE] m Neutrino energy,
= Outgoing lepton energy,
m Outgoing lepton angle.
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INTRODUCING THREE TYPES OF EVENTS

Purityv s 0.619774

n 45000
b E
0 40000 — Eff, av 0.812252
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Considering three types of events: neutrinos out of active volume (OAV), neutrinos in active

volume (IAV) and cosmic muons.

CNN score (Predicted neutrino 1AV)
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CONCLUSIONS AND NEXT STEPS

= New results (from the binary classification) show that we are able to
reduce cosmic background from ~77% to ~34% whilst maintaining a
neutrino interaction selection efficiency within the BNB window of
~91%

= Applying multiplicity cut at M>7 shows better agreement between
data and simulation and improves the neutrino selection efficiency.

m Introducing the third type of events shows that:

m we can trust the network selecting cosmic muons (2osmic = 93%),
m we dramatically reduce the cosmic background (from ~77% to
~38%) and keep a high v selection efficiency (~81%).

m Further separation of the relatively small remaining background can
be done in higher level analyses (we can't expect only PMTs to get
us to 100% neutrino purity).

m Further steps:

m Train the network with additional PMT information,

m add CRT information,

m add e” vs u tag to the neutrino trees,

m work alongside with relevant experts to implement improved

simulations of the PMT responses. .



