
Cutter demo plan 

Start by touring tstthrust_simplified.cc 
This is a mildly simplified version of the original program 

Removed random input generation
Removed output validation & emission
Added optimization barriers so the compiler doesn’t take notice
Computation itself is left untouched.

Idea: those are the kind of simplifications that can be carried out in a few minutes, not invasive
modifications that affect compiler output.

Open -O2 version with Cutter 
This is not the optimization level where the problem was observed
But it has cleaner assembly, so it’s an easier introduction to the tool

Tour the disassembly tab 
Unlike with objdump, we… 

Can easily pick which function we want to disassemble
Get syntax highlighting & some flow control analysis

However, there’s still too much code for comfortable reading
Open the decompiler tab 

Official builds of Cutter integrate a version of NSA’s ghidra decompiler
Decompilation is pattern-matching classic compiler output back into C code
Can be an easier introduction for those who are not used to reading asm
But quite slow and still requires a fair bit of post-processing

Open the control flow graph tab 
Explain the visual basic block graph representation
Show how it makes loops stand out with their backwards arrows
Zoom out, show how easily we locate the two compute loops
Zoom in on each loop in turn and discuss the difference 

thrust::complex based loop gets an inline implementation
std::complex based loop calls mulsc libm function, which means… 

Some function call overhead (mostly register save/reload)
Loss of loop optimizations, especially auto-vectorization

Open -O3 version with Cutter 
Indeed, thrust::complex version received many extra code optimizations
Vectorization is probably responsible for most of the benefit here

Keeping -O3 version opened, open -Ofast version in another window 
This time, std::complex version received similar code optimizations
In which way did -Ofast help here? 

A hint is provided in the notes at the end of https://en.cppreference.com/w/cpp/numeric/complex/
operator_arith3
Basically a result of tragic IEEE-754 error handling design decisions leading to lots of special values
that require special handling
In particular, C++11 mandates that there be only one complex infinity (inf, 0). GCC tries to honor that
standard, thrust doesn’t.
Fast-math tells GCC to assume there will be no special float values

So far, we’ve reached this conclusion via pure static analysis 
No need to run the program, unlinke in dynamic analysis like gdb & perf
Can enable faster diagnosis when program is built for a special dev machine whose setup (e.g. libraries)
takes time to replicate locally

To motivate dynamic analysis, take a tour of tstcpu.cc 
An intermediate stage of me optimizing the aforementioned program
Underwent more invasive modifications, including re/im split
Has no external dependency, so easy to build and run locally

Open -Ofast version of tstcpu.cc with Cutter 
Show that GCC split the computation into a vectorized and scalar part
Use debugger to show that the vectorized part is used and that program stays a long time in that loop -> no
significant overhead!

https://en.cppreference.com/w/cpp/numeric/complex/operator_arith3
https://en.cppreference.com/w/cpp/numeric/complex/operator_arith3



