Cutter demo plan

e Start by touring tstthrust_simplified.cc
¢ This is a mildly simplified version of the original program
* Removed random input generation
* Removed output validation & emission
* Added optimization barriers so the compiler doesn’t take notice
e Computation itself is left untouched.
¢ |dea: those are the kind of simplifications that can be carried out in a few minutes, not invasive
modifications that affect compiler output.
* Open -02 version with Cutter
¢ This is not the optimization level where the problem was observed
¢ But it has cleaner assembly, so it's an easier introduction to the tool
e Tour the disassembly tab
¢ Unlike with objdump, we...
* Can easily pick which function we want to disassemble
* Get syntax highlighting & some flow control analysis
* However, there's still too much code for comfortable reading
¢ Open the decompiler tab
» Official builds of Cutter integrate a version of NSA’s ghidra decompiler
e Decompilation is pattern-matching classic compiler output back into C code
e Can be an easier introduction for those who are not used to reading asm
* But quite slow and still requires a fair bit of post-processing
* Open the control flow graph tab
e Explain the visual basic block graph representation
¢ Show how it makes loops stand out with their backwards arrows
e Zoom out, show how easily we locate the two compute loops
e Zoom in on each loop in turn and discuss the difference
e thrust::complex based loop gets an inline implementation
e std::complex based loop calls mulsc libm function, which means...
* Some function call overhead (mostly register save/reload)
¢ Loss of loop optimizations, especially auto-vectorization
* Open -03 version with Cutter
*Indeed, thrust: : complex version received many extra code optimizations
* Vectorization is probably responsible for most of the benefit here
* Keeping -03 version opened, open -0fast version in another window
* This time, std: : complex version received similar code optimizations
* In which way did -Ofast help here?
¢ A hint is provided in the notes at the end of https://en.cppreference.com/w/cpp/numeric/complex/
operator_arith3
e Basically a result of tragic IEEE-754 error handling design decisions leading to lots of special values
that require special handling
¢ In particular, C++11 mandates that there be only one complex infinity (inf, 0). GCC tries to honor that
standard, thrust doesn't.
e Fast-math tells GCC to assume there will be no special float values
* So far, we've reached this conclusion via pure static analysis
* No need to run the program, unlinke in dynamic analysis like gdb & perf
e Can enable faster diagnosis when program is built for a special dev machine whose setup (e.g. libraries)
takes time to replicate locally
* To motivate dynamic analysis, take a tour of tstcpu.cc
¢ An intermediate stage of me optimizing the aforementioned program
¢ Underwent more invasive modifications, including re/im split
* Has no external dependency, so easy to build and run locally
* Open -0Ofast version of tstcpu. cc with Cutter
¢ Show that GCC split the computation into a vectorized and scalar part
¢ Use debugger to show that the vectorized part is used and that program stays a long time in that loop -> no
significant overhead!



https://en.cppreference.com/w/cpp/numeric/complex/operator_arith3
https://en.cppreference.com/w/cpp/numeric/complex/operator_arith3




