

Update of double-layer BIB suppresion in the Vertex Tracking detector

including realistic beamspot

N. Bartosik

INFN Torino

Double layer cuts: limitations

Particles from a $\mu^+\mu^-$ collision originate from the centre of the detector (IP)

BIB particles arrive from the sides of the detector (nozzles)

Silicon sensors of the Vertex detector arranged in double layers to select pairs of hits aligned with the IP at the readout-electronics level

Effectiveness limited by several factors:

- sensor's spatial resolution limits the lower $\Delta \phi / \Delta \Theta$ threshold
- lowest reconstructable track p_{T} limits the lower $\Delta \varphi$ threshold
- displaced track vertex limits the the lower Δφ/ΔΘ threshold at layers close to IP

Let's check these effects on $\Delta \phi / \Delta \Theta$ of μ^{\pm} tracks

Angular vs planar distance

Previously the Double Layer cuts were not applied to the full extent

• hits were filtered only based on $\Delta\Theta$ in a wide range of ΔU (on the sensor plane)

Nazar Bartosik

Angular hit separation: ideal case

Looking at the $\Delta \phi$ and $\Delta \Theta$ separation between closest hits on layers O-1 Considering an ideal case: no smearing of hit positions applied

Lower p_T tracks are bent more $\rightarrow \Delta \phi$ becomes larger

 \rightarrow choice of the minimum track p_T we plan to reconstruct is important

Effect of spatial resolution: inner layers

Enabled the smearing of hits by the spatial resolution: $\sigma = 5 \mu m$

 $\Delta \Theta$ window significantly increased: $|\Delta \Theta| \le 0.5$ mrad

Impact on \Delta \phi window less significant: driven mostly by the track p_T

Nazar Bartosik

Effect of spatial resolution: outer layers

As expected, smaller impact in the outer layers

• same displacement on sensor surface has smaller angular shift

Tighter $\Delta \Theta$ selection can be used at the outer layers

Nazar Bartosik

Effect of realistic beamspot: inner layers

Adding the realistic beamspot, IP position smeared along Z axis $\,\sigma$ = 10mm

• using samples generated by Massimo: tracks have fixed p (not p_T)

Huge impact on $\Delta\Theta$ separation: 0.5 mrad \rightarrow 30 mrad

Significant spread of $\Delta \phi$ separation as well

Nazar Bartosik

Effect of realistic beamspot: outer layers

Effect of the realistic beamspot smaller in the outer layers

Still a noticeable impact on $\Delta\Theta$ separation: 0.2 mrad \rightarrow 6 mrad

Nazar Bartosik

Defining the cuts: Barrel

Taking tracks with p = 1 GeV as the softest tracks to be efficiently readout

- defines the $\Delta\varphi$ window to search for an aligned hit on the 2^{nd} sublayer

MAX $\Delta \phi | \Delta \Theta$ for each double layer:

2.8 35.0 2.0 18.0 1.7 10.0 1.5 6.5

Defining the cuts: Endcap

Smaller angular separation in the Endcaps

MAX $\Delta \phi | \Delta \Theta$ for each double layer:

2.1 3.5 1.7 1.5 1.6 0.7 1.5 0.5

Nazar Bartosik

Checking the effect: hit multiplicity

Improved BIB suppression power from $\Delta \phi$ is counterweighted by the need for acceptance of the finite beamspot size

Resulting reduction of *#* hits in the Vertex detector is still not great

	timing		timing + DL	%
BARREL	208158	→	114084	55 %
ENDCAP	352378	\rightarrow	61802	18 %

If beamspot was perfect: Barrel

Much tighter cuts can be applied if we ignore the smeared beamspot

smearing only the hits but not the IP position

3.0|0.5 2.0|0.4 1.6|0.3 1.5|0.25

Also substantial tightening of the cuts in the Endcaps is possible

Can we correct the beamspot?

We can't make beamspot smaller \rightarrow Double Layer cuts can't be so tight ONLINE

Determine IP position

• simpler track reco?

muon detector?

• calorimeters?

BUT it's not a hadron collider with ~100 pile-up IPs

↓ there is only one real IP that might be possible to identify beforehand

	timing	+ loose DL	+	tight DL	%
BARREL	208158	→ 114084	\rightarrow	3942	2 %
ENDCAP	352378	→ 61802	\rightarrow	8705	2 %

With this amount of hits we can reconstruct 1 event with 100% BIB in <mark>~3 minutes</mark>

Knowing the precise position of the IP would dramatically simplify the track reconstruction

Nazar Bartosik

A nother minor handle

BIB hits tend to have more deposited energy: longer path inside silicon?

Nazar Bartosik

Reduce double-layer separation in the central region

Summary

Effectiveness of the Double Layer BIB suppression is strongly limited by the precision of the Interaction Point (IP) position

Possible ways of improving it before full-scale track reconstruction should be explored