MUON COLLIDER

Angela Zaza, Anna Colaleo, Filippo Errico, Paola Mastrapasqua, Rosma Venditti

Samples

	Physical process	#Events	Cross section (pb)
Signal	$\mu^+\mu^- \rightarrow H \rightarrow ZZ \rightarrow 4\mu$	4000	$9.291 \cdot 10^{-6}$
Irreducible bkg	$\mu^{+}\mu^{-} \rightarrow Z\mu^{+}\mu^{-}\nu_{\mu}\overline{\nu_{\mu}} (*)$ $Z \rightarrow \mu^{+}\mu^{-}$	4000	7.972 · 10 ^{−5}
(F. diagrams in backup slides)	$ \begin{array}{c} \mu^{+}\mu^{-} \rightarrow Z\mu^{+}\mu^{-} \\ Z \rightarrow \mu^{+}\mu^{-} \end{array} $	4000	$1.877 \cdot 10^{-3}$

 $\sqrt{s} = 1.5 \,\text{TeV}$

Software release: v02-05-MC

Magnetic Field: 3.57 T Muon Barrel: - 1.34 T Double Layer Filter not enabled (*) in order to avoid $\mu^+\mu^-$ annihilation, we produced $\mu^+e^- \rightarrow Z\mu^+\mu^-\nu_e\overline{\nu_{\mu}}$ with MadGraph (Fabio Maltoni suggestion)

Transverse Momentum: comparison between Generated and Reconstructed Muons

Generated muons after interaction with detector: Pt histogram

Reconstructed Muons: Pt histogram

Pseudorapidity: comparison between Generated and Reconstructed Muons

Generated muons after interaction with detector: η histogram

Reconstructed muons: η histogram

Φ : comparison between Generated and Reconstructed Muons

Generated muons after interaction with detector: ϕ histogram

Reconstructed muons: ϕ histogram

Muon trak Parameters: D0 and Z0

Reconstructed muons: d0 histogram

Reconstructed muons: z0 histogram

Muon trak Parameters: Ω and tan λ

Reconstructed muons: Ω histogram

Reconstructed muons: $tan\lambda$ histogram

Primary Vertex Position

Primary Vertex Chi Square

Primary Vertex χ^2

Histograms are normalized to the number of events and cross section, assuming $L=1pb^{-1}$ for all the samples

Number of Reconstructed Muons per event

# Reco muons	signal	bkg
0	I	0
I	15	29
2	187	320
3	823	1820
<4	1026	2169
% wrt the total number of Gen events	25.65%	27.11%

SIGNAL GEN level: 16000 final state muons RECO level: 14758 reconstructed as muons 499 wrongly reconstructed as: neutrons(255), pions(185), photons(9)

GEN level: muons that have not been reconstructed

GEN not reconstructed muons η

Reconstruction Efficiency: ONLY SIGNAL

Pt Reconstruction Efficiency

η Reconstruction Efficiency

Hits in the muon system: ONLY SIGNAL

number of hits vs η in the muon system: Pt<5GeV

Selection of good final state muons

Table A

SIGNAL			BACKGROUND			
Selection	#muons	Absolute efficiency	Relative efficiency	#muons	Absolute efficiency	Relative efficiency
GEN	16000			32000		
$ \eta < 2.5$	14758 ± 121	0.9224 ± 0.0021	0.9224 ± 0.0021	29457 ± 172	0.9205 ± 0.0015	1.00 ± 0.00
$P_T > 5GeV$	14293 ± 120	0.8933 ± 0.0024	0.9684 ± 0.0014	29406 ± 171	0.9189 ± 0.0015	0.9983 ± 0.0002
$D_0 < 2 mm$	14291 ± 120	0.8932 ± 0.0024	0.9999 ± 0.0001	29404 ± 171	0.9189 ± 0.0015	0.9999 ± 0.0001
$Z_0 < 10 mm$	14288 ± 120	0.8930 ± 0.0024	0.9998 ± 0.0001	29404 ± 171	0.9189 ± 0.0015	1.00 ± 0.00

From now on, only reconstructed muons passing the selection in Table A will be considered.

Transverse Momentum Resolution

Pt resolution vs η

Pt Resolution vs Pt

ZZ Candidate Selection: inspired to CMS analysis

- Z candidates: pairs of selected muons of opposite charge that satisfy $12 < InvMass \ (\mu^+\mu^-) < 120 \ GeV$
- ZZ candidates: pairs of non-overlapping Z candidates Z_1 : Z candidate with reconstructed mass $m_{\mu^+\mu^-}$ closest to the nominal Z boson mass Z_2 : the other Z candidate
 - ZZ candidates are required to satisfy:
 - \blacktriangleright $\Delta R > 0.02$ between each of the 4 muons
 - > At least 2 muons with:
 - $P_{T,i} > 20 \ GeV$ $P_{T,i} > 10 \ GeV$
 - $> Z_1 mass > 40 GeV$
 - ➢ InvMass (4µ) > 70 GeV

ATLAS selection algorithm will also be considered

Selection of Events						
Table B	SIGNAL BACKGROUND					
Selection	#events	Absolute efficiency	Relative efficiency	#events	Absolute efficiency	Relative efficiency
GEN	4000			8000		
At least 4 good final state muons	2592			5791		
Opposite sign muon pairs	2592 ± 51	1.00 ± 0.00	1.00 ± 0.00	5791 ± 76	1.00 ± 0.00	1.00 ± 0.00
$\Delta R > 0.02$ between each of the 4 muons	2586 ± 51	0.9977 ± 0.0010	0.9977 ± 0.0010	5790 ± 76	0.9998 ± 0.0002	0.9998 ± 0.0002
At least 2 muons with: $P_{T,i} > 20 \text{ GeV}$ $P_{T,j} > 10 \text{ GeV}$	2585 ± 51	0.9973 ± 0.0010	0.9996 ± 0.0004	5790 ± 76	0.9998 ± 0.0002	1.00 ± 0.00
$12 < InvMass (\mu^+\mu^-) < 120 GeV$	2581 ± 51	0.9958 ± 0.0013	0.9985 ±0.0008	2477 ± 50	0.4277 ± 0.0065	0.42781 ± 0.0065
$Z_1 mass > 40 \ GeV$	2562 ± 51	0.9884 ±0.0021	0.9926 ± 0.0017	2476 ± 50	0.42756 ± 0.0065	0.9996 ± 0.0004
$InvMass(4\mu) > 70 GeV$	2561 ± 51	0.9880 ±0.0021	0.9996 ± 0.0004	2476 ± 50	0.42756 ± 0.0065	1.00 ± 0.00
After normalization (L = $500 f b^{-1}$)	2.97			52.31		

From now on, only events passing the selection in Table B will be considered.

Z_1 and Z_2 Mass

Z1 invariant mass

Z2 invariant mass

Higgs Mass

Higgs invariant mass

The analyzed channel appears to be background free. A much higher number of bkg events need to be generated in order to confirm this preliminary result.

Next steps

- Increase the samples size for a better statistics
- Optimize muons reconstruction and identification
- Add BIB events
- Implement muon ID
- Analyse Higgs production in s channel
- Perform the same study for $\sqrt{s} = 3 \text{ TeV} \longrightarrow \text{BIB available }$?

Many thanks to Massimo, Laura, Lorenzo, Nazar and Chiara for helping.

THANK YOU!

BACK UP

Feynman Diagrams

Feynman Diagrams

Track Parameters

Track parameters	
d0	The distance between the helix and the reference point in the x-y plane.
z0	The distance between the helix and the reference point in the z direction.
Ω	The signed curvature of the track, defined as Ω =Pt/(cBq), where B is the magnetic field and q the charge of the particle.
tanλ	The angle of the helix to the x-y plane.

Higgs Transverse Momentum

Higgs Transverse Momentum

GEN level: Higgs Pt and eta

Transverse Momentum difference between Reconstracted and Generated Muons

 ΔPt between RECO and GEN muons

Good reconstructed muons

 ΔR between each of the 4 muons

