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Graphs

- A graph is a mathematical structure composed of:

- Nodes: vertices with associated information (spatial coordinates,
features, etc)
- Edges: connections between nodes
- Can be directed or undirected
- Can have associated information

- Graphs can represent many types of relational/geometric data
- Graphs can be multilevel (nodes are encoded graphs)
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Graph Neural Networks

- GNNs learn a smart embedding of the graph structure

- Leverage geometric information by passing and aggregating
messages from neighbors

- Practically, W, and B, are shallow neural networks
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GNNs for Tracking

Basic procedure

1. Form initial graph from spacepoints/hits
(pre-processing)

2. Process with GNN to get probabilities of all -
edges

3.  Apply post-processing algorithm to link
edges together into tracks and get
parameters
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- Many places to improve/innovate

- Graph construction, architectures, data
augmentation...

- Most work shown here uses
TrackML dataset
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https://www.kaggle.com/c/trackml-particle-identification
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Graph Construction

Optimizing graph construction can help GNNs learn effectively

- Edge efficiency: true edges/all edges
- Truth efficiency: true edges in graph/all possible true edges

‘Current’ Methods Exploratory Methods
- Layer pairs: create edges - Dynamic KNN
between nodes in adjacent . Learned clustering

layers within a A¢/Ar range

- Layer pairs+: allow edges
within a layer

- KNN: form edges between a hit
and its k closest neighbors (can

customize distance metric)
R W Graph Efficiency

- DBScan in eta-phi space

pr > 0.5 GeV
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Graph Construction

Optimizing graph construction can help GNNs learn effectively
- Edge efficiency: true edges/all edges
- Truth efficiency: true edges in graph/all possible true edges

‘Current’ Methods Exploratory Methods

- Layer pairs: create edges - Dynamic kNN
between nodes in adjacent . Learned clustering

layers within a A¢/Ar range _ _

- Layer pairs+: allow edges + DBScan in eta-phi space
within a layer

- KNN: form edges between a hit

and its k closest neighbors (can
customize distance metric)

HEP.TrkX HEP.TrkX+, DBSCAN | DBSCAN
P?m [GCV ] ';f’slopc 20 [m] ';bslopc 20 [m] € MinPts
2 6x107* 0.1 6x107* 15 0.22 3
1.5 6x107* 0.1 6x107* 15 0.18 3
1 6x 107 0.1 6x107* 15 0.1 3
0.75 7.63x 107 0.1 7.63x10™* 25 0.08 3
0.6 7.63x 107 0.1 7.63x107* 295 0.06 3
0.5 7.63x107* 0.1 7.63%x107* 295 0.05 3
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- Graph Modules are core | oyer2 x,
component: ®- 3.:::;;;""""""*'3‘?ffi;i_?.oiiﬁ

- Run node and edge convolutions o .:

- Update features of both
- Each message passing functlon s a
FCN

- Graph modules are often
recursively connected

- Allows aggregation of progresswely
more distant information

- Weights can be shared across modules



https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1805.06184
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Proof of Principle

NeurlPS 2019 ExaTrkX architecture:

- Node and edge features embedded in
latent space

- 8 graph modules with shared weights

- Initial embeddings concatenated at
each module

- Each FCN has 128 hidden features and
RelLU activation
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Madel output Cut on model score Paper


https://exatrkx.github.io/
https://arxiv.org/pdf/2003.11603.pdf
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Interaction Networks

Applies relational and object models
In stages to infer abstract interactions
and object dynamics

— p?in > 2 GeV

- Relation and object models are FCNs gt
—— pPin>1 Ge
- Total of ~10,000 parameters (smaller PP > 0.75 Gev

—— pMin>(075% * * GeV
—— pIin>0.6 GeV

than previous architecture)
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https://arxiv.org/abs/1612.00222
https://drive.google.com/file/d/1_BpJTFCit962qHAy0Q3RIrtq_T1XGIX-/view
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Data Augmentation

- Including endcaps:
- Difficult in layer pairs construction due to edge ,..| = -

Pixel IN with Endcaps

vy True Positive
Il False Negative
Il False Positive

ordering o]l NN
- Initial studies in pixel detector only, typically .| . L)
improve edge efficiency Eomod oo R

- Dropping layers from graph construction o i \

- Reduce size of graph while maintaining track °={ - °

finding efficiency DN\ |/

- Applying z and phi reflections I I UIN R

- Break symmetry of detector to possibly
enhance learning
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Instance Segmentation GNNS

- Instance segmentation: computer vision task of identifying
Instances of an object in an image and forming pixel mask

- After message passing, node state vectors are used as input

to three branches:
- Classification branch identifies the node as signal or background

- Localization branch predicts a bounding box for each node

- Ellipses merged and scored to create track clusters
- Tracking branch predicts track parameters ‘
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https://arxiv.org/abs/2003.01251
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Elliptical Bounding Boxes

- Construct graphs using DBScan in eta-phi space
- Bounding ellipses parameterized with 5 degrees-of-freedom

- Encoded ellipses Wlth each node for tralnlng
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Conformal GNNSs

- Conformal transformation map tracks to straight lines
- Can extract track parameters directly from linear fit

- Run instance segmentation GNN in conformal space to find
tracks and calculate parameters in a single shot
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Accelerated GNN Tracking

Strong interest in accelerating these algorithms with FPGASs
- HLS4ML implemented a 1 iteration version of IN for FPGA

- Princeton group optimizing OpenCL IN with FPGA as co-
processor

- Bottleneck in data transfer from CPU to FPGA

- Opportunity for further acceleration in matrix multiplication kernels
- Also exploring graph construction on FPGA
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Recent Paper



https://fastmachinelearning.org/hls4ml/
mailto:https://arxiv.org/abs/2012.01563

On-going Tracking Studies

- Optimize parameters of existing graph construction
algorithms and explore new ones

- Refine track formation algorithm for edge classification
architectures

- Improve existing architectures
- Include external effects in IN, optimize embedding...
- New ideas
- Timing information, Hough transforms, graph kernels...

- Test performance in LHC experiment environments
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Conclusions

- GNNs are a promising method for HL-LHC tracking
- Geometric data representation with variable number of inputs

- A variety of architectures have been shown to work
- Focus is now on refining and optimizing
- Also exploring one-shot tracking architectures

- Graph construction (and embedding) is critical to
performance

- On-going optimization studies (submitted to vVCHEP)

- Working towards accelerating graph algorithms for use at
HL-LHC

- Possibly at trigger level
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Thank you!

Happy to answer any questions!

DX} sthais@princeton.edu £/ @basicsciencesav



