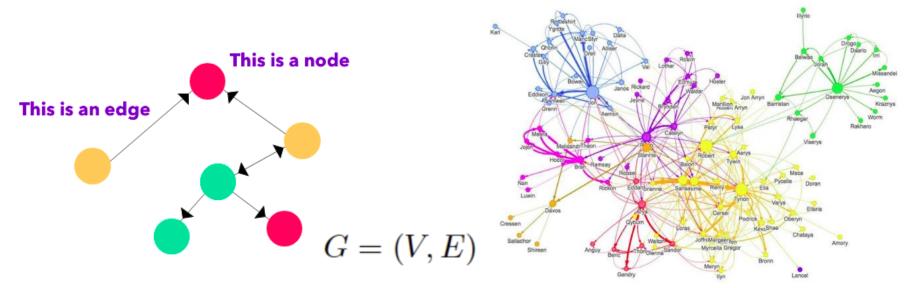
GRAPH BASED PARTICLE TRACKING

Savannah Thais IRIS-HEP Topical Meeting 03/01/2021

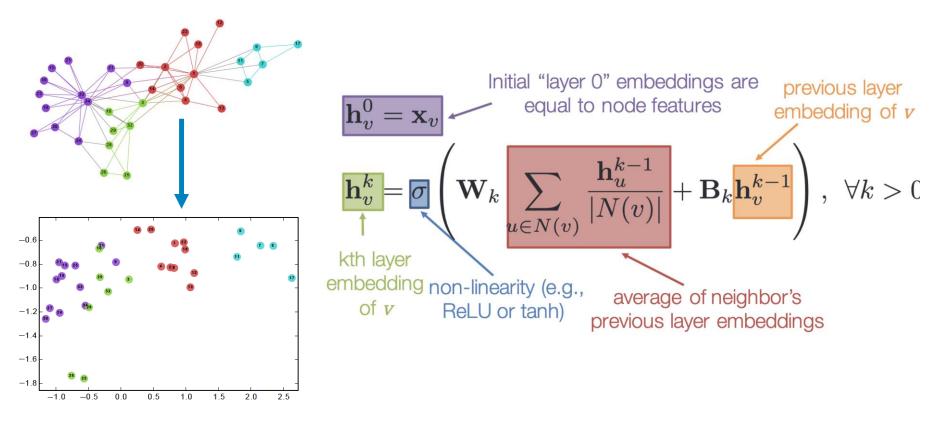
Graphs

- A graph is a mathematical structure composed of:
 - Nodes: vertices with associated information (spatial coordinates, features, etc)
 - Edges: connections between nodes
 - · Can be directed or undirected
 - Can have associated information
- Graphs can represent many types of relational/geometric data
- Graphs can be multilevel (nodes are encoded graphs)



Graph Neural Networks

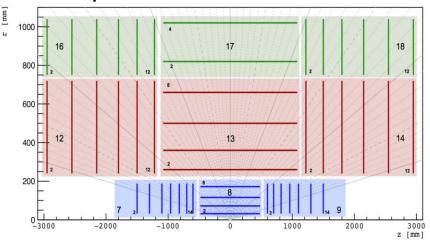
- GNNs learn a smart embedding of the graph structure
- Leverage geometric information by passing and aggregating messages from neighbors
- Practically, W_k and B_k are shallow neural networks

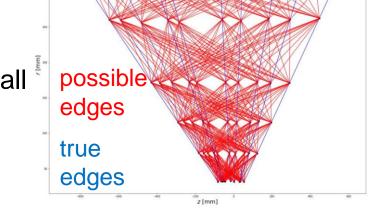


GNNs for Tracking

Basic procedure

- 1. Form initial graph from spacepoints/hits (pre-processing)
- 2. Process with GNN to get probabilities of all edges
- Apply post-processing algorithm to link edges together into tracks and get parameters





Cartesian Data Samp

- Many places to improve/innovate
 - Graph construction, architectures, data augmentation...
- Most work shown here uses <u>TrackML dataset</u>
 - Open, experiment agnostic
 - 200 PU, silicon semiconductor detector

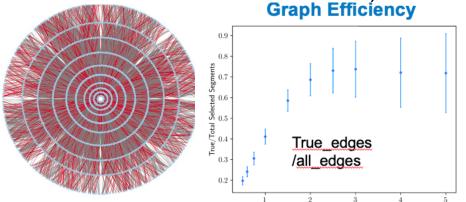
Graph Construction

Optimizing graph construction can help GNNs learn effectively

- Edge efficiency: true edges/all edges
- Truth efficiency: true edges in graph/all possible true edges

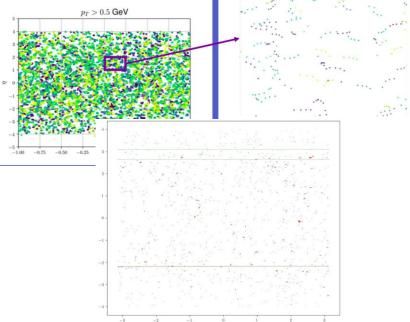
'Current' Methods

- Layer pairs: create edges between nodes in adjacent layers within a $\Delta \phi / \Delta r$ range
- Layer pairs+: allow edges within a layer
- kNN: form edges between a hit and its k closest neighbors (can customize distance metric)



Exploratory Methods

- Dynamic kNN
- Learned clustering
- DBScan in eta-phi space



Graph Construction

Optimizing graph construction can help GNNs learn effectively

- Edge efficiency: true edges/all edges
- Truth efficiency: true edges in graph/all possible true edges

'Current' Methods

- Layer pairs: create edges between nodes in adjacent layers within a $\Delta \phi / \Delta r$ range
- Layer pairs+: allow edges within a layer
- kNN: form edges between a hit and its k closest neighbors (can customize distance metric)

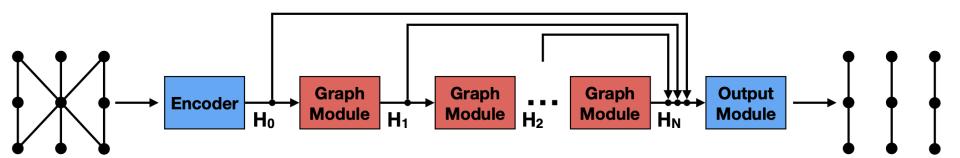
Exploratory Methods

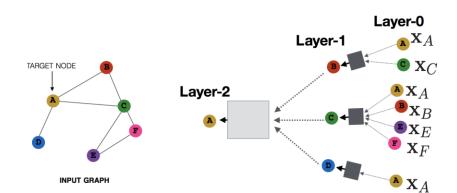
- Dynamic kNN
- Learned clustering
- DBScan in eta-phi space

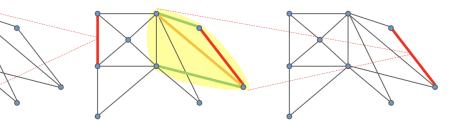
	HEP.TrkX		HEP.TrkX+,	DBSCAN	DBSCAN	
$p_{\rm T}^{\rm min}$ [GeV]	ϕ_{slope}	<i>z</i> ₀ [m]	ϕ_{slope}	<i>z</i> ₀ [m]	ε	MinPts
2	6×10^{-4}	0.1	6×10^{-4}	15	0.22	3
1.5	6×10^{-4}	0.1	6×10^{-4}	15	0.18	3
1	6×10^{-4}	0.1	6×10^{-4}	15	0.1	3
0.75	7.63×10^{-4}	0.1	7.63×10^{-4}	25	0.08	3
0.6	7.63×10^{-4}	0.1	7.63×10^{-4}	29.5	0.06	3
0.5	7.63×10^{-4}	0.1	7.63×10^{-4}	29.5	0.05	3

Edge Classifiers

- Graph Modules are core component:
 - Run <u>node</u> and <u>edge</u> convolutions
 - Update features of both
 - Each message passing function is a FCN
- Graph modules are often recursively connected
 - Allows aggregation of progressively more distant information
 - Weights can be shared across modules



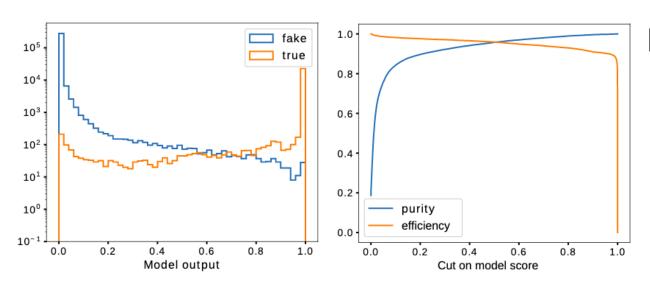


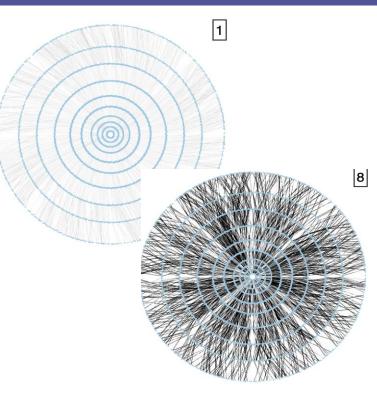


Proof of Principle

NeurIPS 2019 ExaTrkX architecture:

- Node and edge features embedded in latent space
- 8 graph modules with shared weights
- Initial embeddings concatenated at each module
- Each FCN has 128 hidden features and ReLU activation





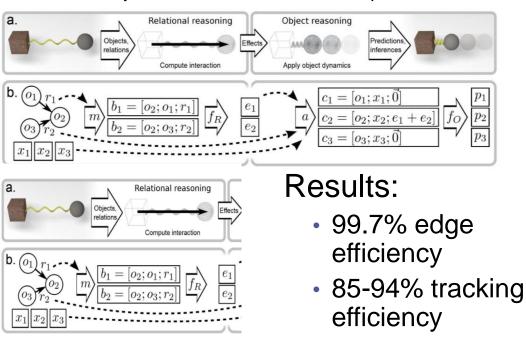
Results:

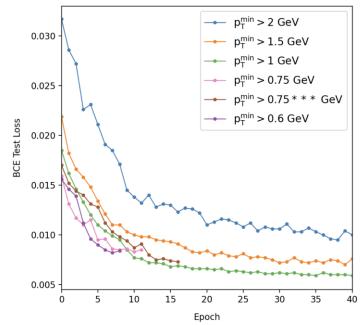
- 95.9% edge efficiency (*true* edges/possible)
- ~95% track finding accuracy (*all edges merged*)
 Paper

Interaction Networks

Applies relational and object models in stages to infer abstract interactions and object dynamics

- Relation and object models are FCNs
- Total of ~10,000 parameters (smaller than previous architecture)

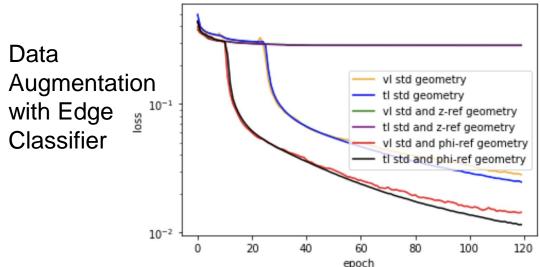




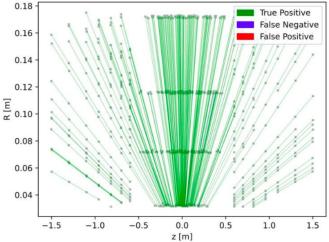
Paper, Recent Talk

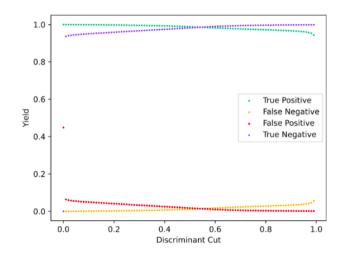
Data Augmentation

- Including endcaps:
 - Difficult in layer pairs construction due to edge ordering
 - Initial studies in pixel detector only, typically improve edge efficiency
- Dropping layers from graph construction
 - Reduce size of graph while maintaining track finding efficiency
- Applying z and phi reflections
 - Break symmetry of detector to possibly enhance learning



Pixel IN with Endcaps

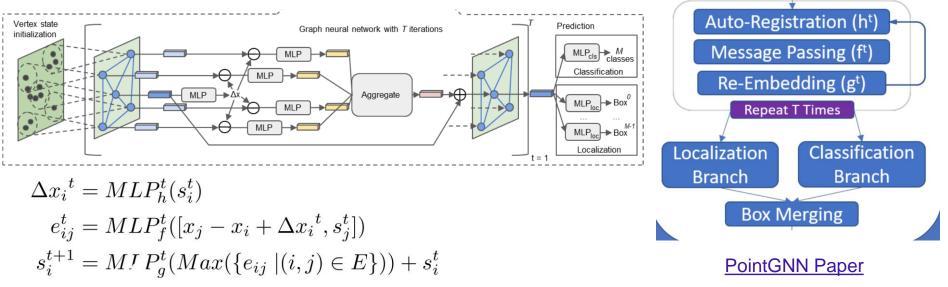




Input Graph

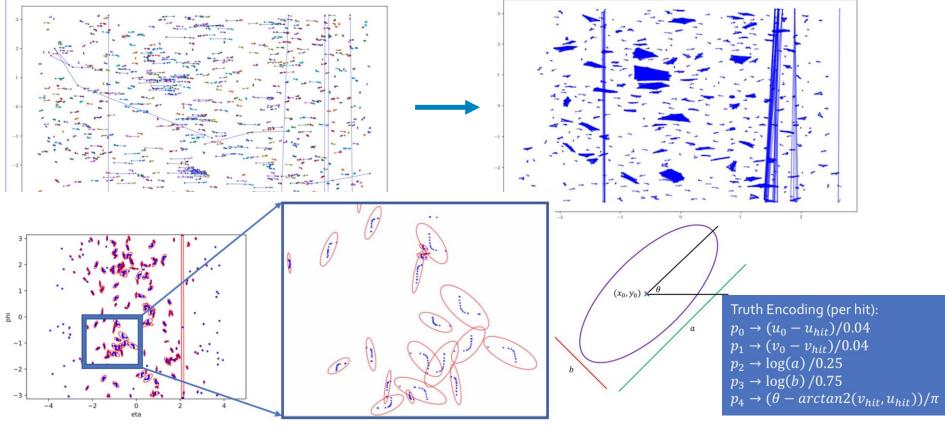
Instance Segmentation GNNs

- Instance segmentation: computer vision task of identifying instances of an object in an image and forming pixel mask
- After message passing, node state vectors are used as input to three branches:
 - Classification branch identifies the node as signal or background
 - Localization branch predicts a bounding box for each node
 - Ellipses merged and scored to create track clusters
 - Tracking branch predicts track parameters



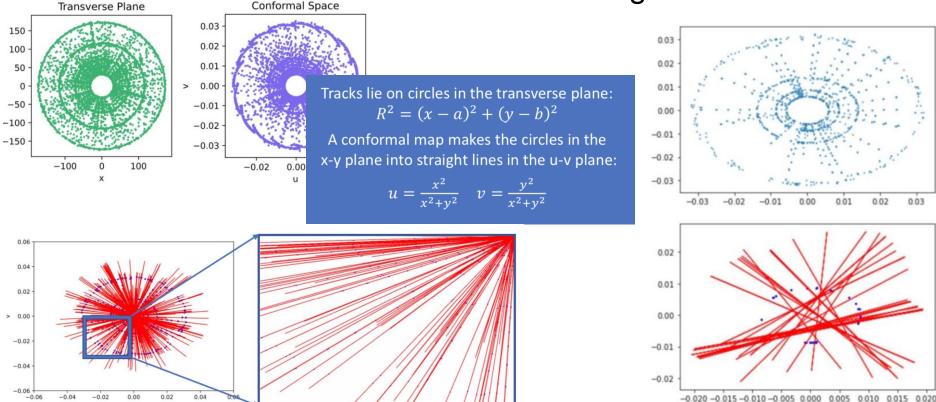
Elliptical Bounding Boxes

- Construct graphs using DBScan in eta-phi space
- Bounding ellipses parameterized with 5 degrees-of-freedom
- Encoded ellipses with each node for training



Conformal GNNs

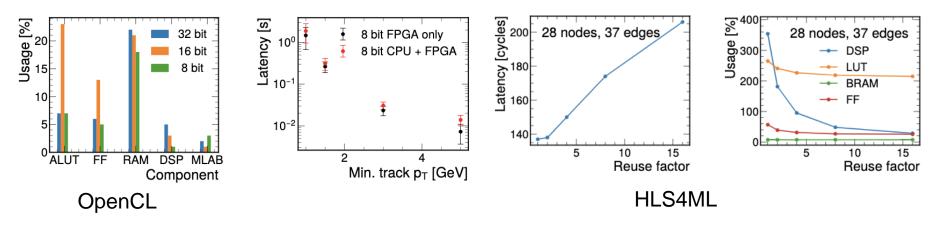
- Conformal transformation map tracks to straight lines
 - · Can extract track parameters directly from linear fit
- Run instance segmentation GNN in conformal space to find tracks and calculate parameters in a single shot



Accelerated GNN Tracking

Strong interest in accelerating these algorithms with FPGAs

- <u>HLS4ML</u> implemented a 1 iteration version of IN for FPGA
- Princeton group optimizing OpenCL IN with FPGA as coprocessor
 - Bottleneck in data transfer from CPU to FPGA
 - Opportunity for further acceleration in matrix multiplication kernels
 - Also exploring graph construction on FPGA



Recent Paper

On-going Tracking Studies

- Optimize parameters of existing graph construction algorithms and explore new ones
- Refine track formation algorithm for edge classification architectures
- Improve existing architectures
 - Include external effects in IN, optimize embedding...
- New ideas
 - Timing information, Hough transforms, graph kernels...
- Test performance in LHC experiment environments

Conclusions

- GNNs are a promising method for HL-LHC tracking
 - Geometric data representation with variable number of inputs
- A variety of architectures have been shown to work
 - Focus is now on refining and optimizing
 - Also exploring one-shot tracking architectures
- Graph construction (and embedding) is critical to performance
 - On-going optimization studies (submitted to vCHEP)
- Working towards accelerating graph algorithms for use at HL-LHC
 - Possibly at trigger level

Savannah Thais 03/01/2021

Thank you! Happy to answer any questions!

🖂 sthais@princeton.edu

\$7@basicsciencesav