

Hyperparameter Optimisation service at ATLAS

Rui Zhang, supported by US-ATLAS
University of Wisconsin-Madison
HL-LHC R&D topics
Mar 03, 2021

Contents

- Introduction to the project: hyperparameter optimisation service at ATLAS
- intelligent Data Delivery Service (iDDS)
- * Hyperparameter optimisation using iDDS on the ATLAS Grid
 - The usual HPO workflow
 - Ingredients of the workflow
 - The segmented HPO workflow
- On heterogeneous resources
 - HPC/Summit and its challenges
 - Commercial Cloud for distributed training
- Visualisation support

Introduction: HPO service at ATLAS

- ❖ The goal of the project is to provide an HPO service to ATLAS users for ML
 - Minimal user code adaption
 - Support for advanced search algorithms in addition to the traditional grid or random search algorithms
 - Reuse ATLAS production and distributed system (PanDA) no reinventing the wheel
 - Visualisation of results
- Single-function-call pattern for HPO
 - Computing resources are managed behind the scene
 - Not suitable since ATLAS has its own resource management
- Ask-and-tell pattern for HPO
 - Decoupled optimisation+sampling from training in space-time
 - Purely point searching, no resource management
 - We go in this way

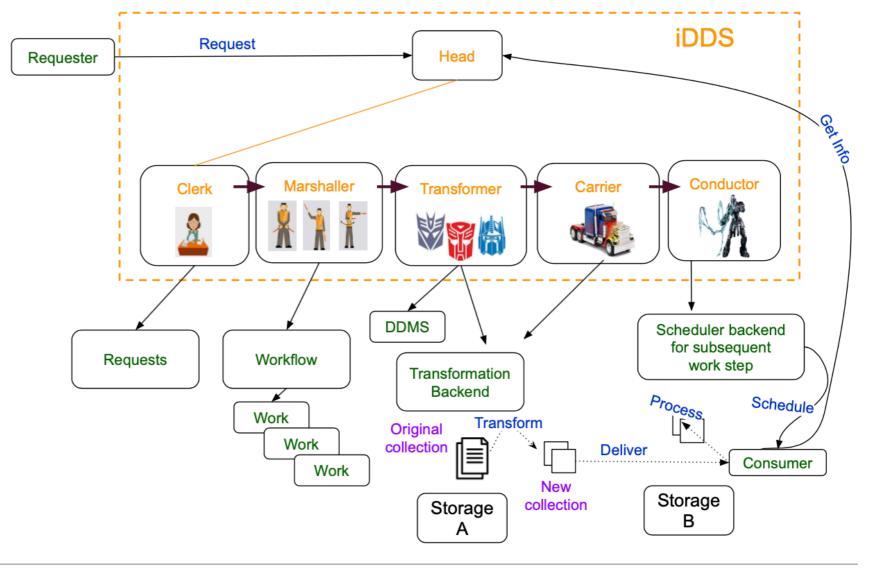
```
"The ask-and-tell pattern"
while ~ opt.stop
    x = ask(opt)
    y = f(x)
    opt = tell(opt, x, y)
end
```

The intelligent Data Delivery Service (iDDS)

* <u>iDDS</u> (a joint project with IRIS-HEP) is designed to intelligently transform and deliver needed data to workflows in a fine-grained way.

• Takeaway: jobs of successive tasks start as soon as possible, no need waiting for precedent tasks to finish, optionally making decisions in

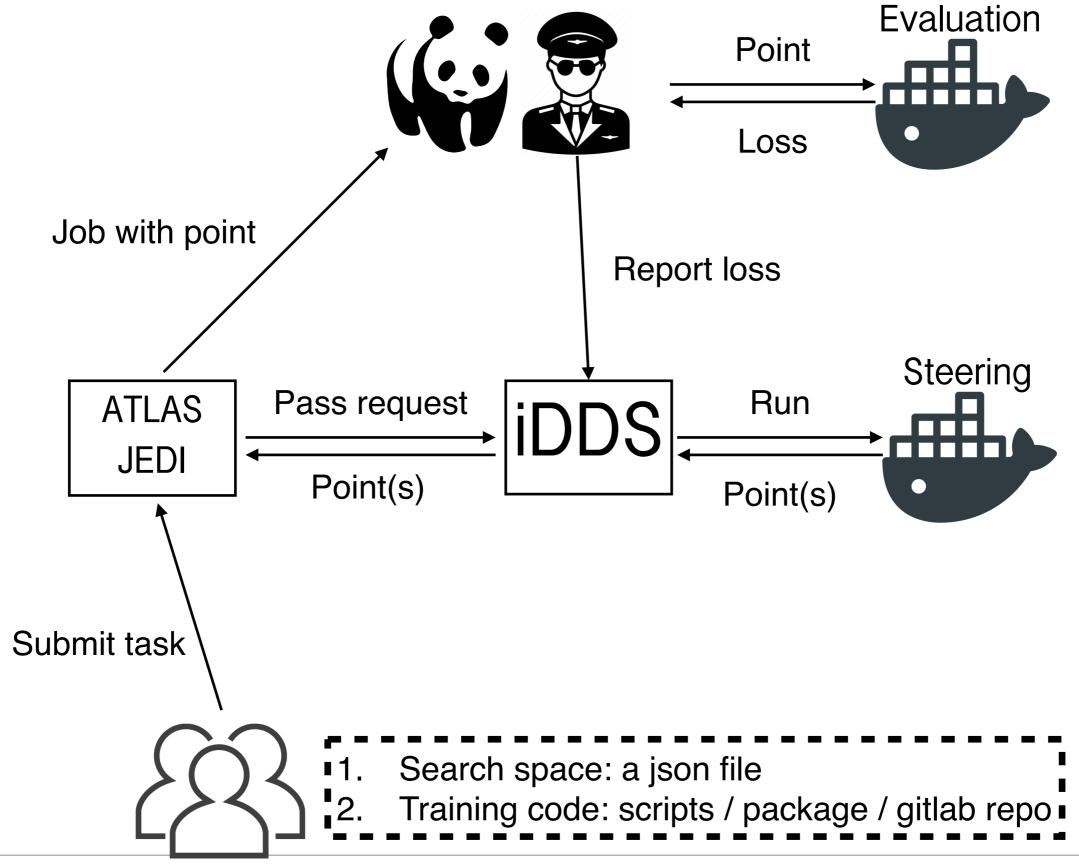
between



The intelligent Data Delivery Service (iDDS)

- Many applications share this paradigm, e.g.:
 - Data Carousel: job starts when its input is ready, no waiting for the full dataset to be transferred
 - A chain of tasks (DOMA): successive jobs start when enough inputs are produced by the precedent tasks
 - A chain of tasks (Active Learning): successive jobs are created and submitted by iDDS based on results of precedent tasks => extendable to a generic function-as-a-service type of workflow
- ❖ HPO is a series of tasks with decision-making in between —- a suitable use case

Overview of the HPO workflow



Ingredients of the workflow

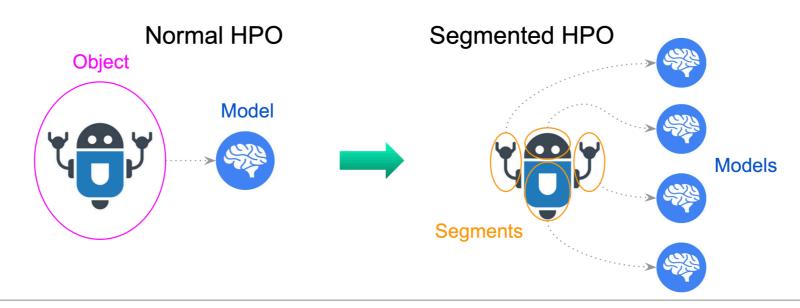
- Two containers to fulfil the loop:
 - SteeringContainer optimisation at iDDS servers
 - Generate next HP points with customised method
 - A wide range of HPO methods are supported

- EvaluationContainer training at Grid (GPU) sites
 - Submodule pay load contains model definition, training scripts (user specific)

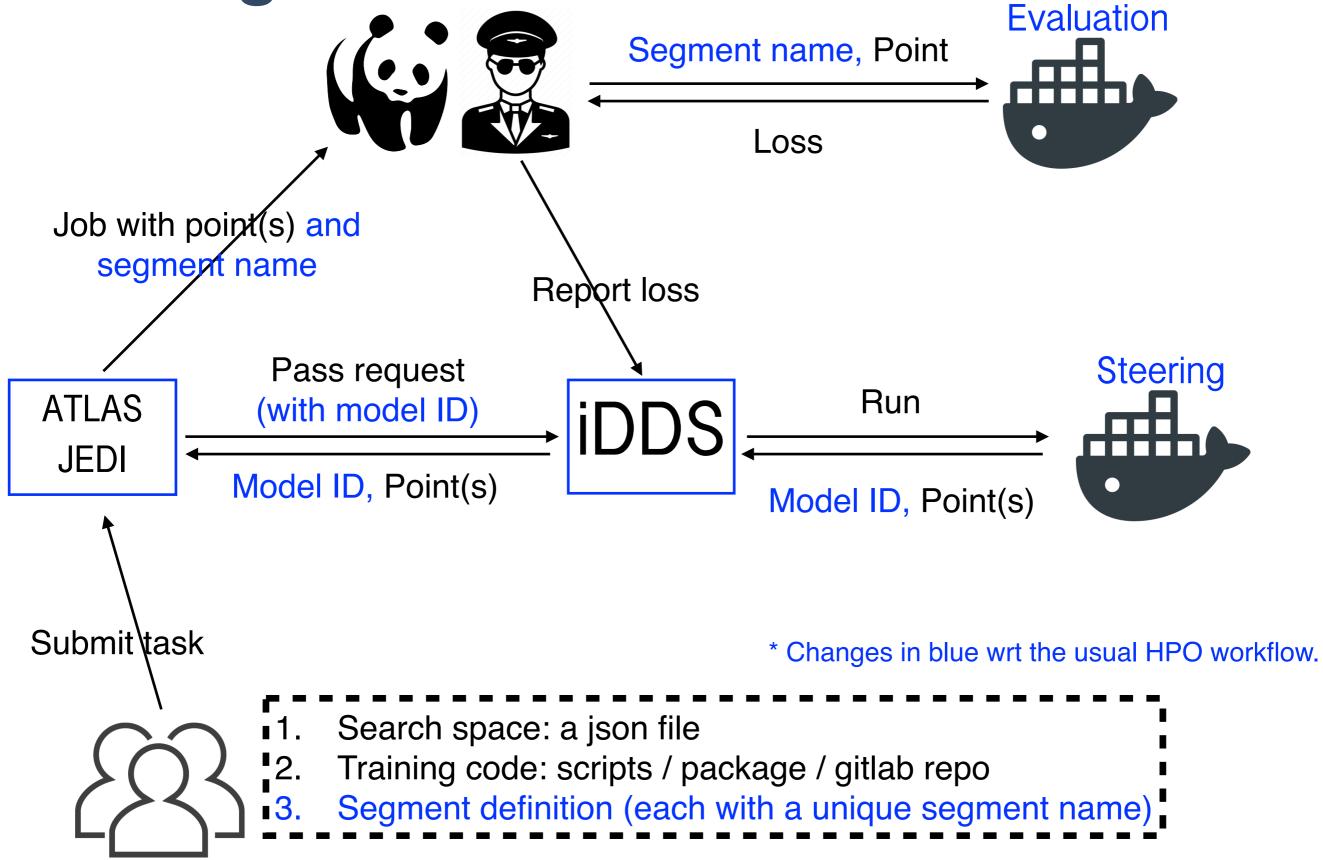
- Checkpointing:
 - Periodically upload checkpoints to Grid
 - Download the checkpoint when the same job is retrying
 - Resume training if checkpoint is found

Segmented HPO - Why do we need it

- ❖ Some machine learning payloads have similar architecture of models targeting different physics regions/objects
 - Essentially multiple models formed with different training datasets
 - Once the amount is large, bookkeeping is challenging
- ❖ A real ATLAS example: FastCaloGAN, a calorimeter image generation model
 - 300 GANs = 3 PIDs x 100 η slices
 - 300 individual tasks in the usual workflow
- Now this can be done with Segmented HPO



The segmented HPO workflow

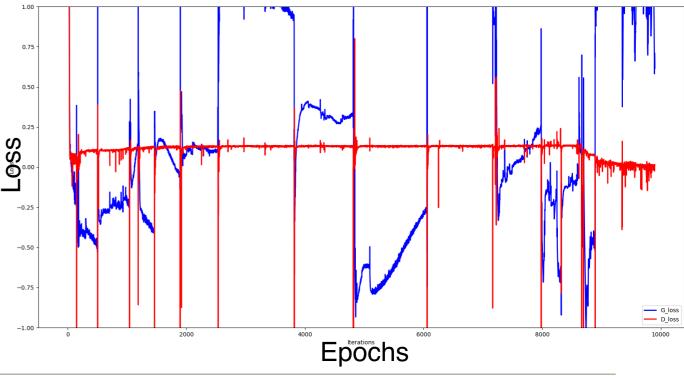


Features and test results

* Features:

- Support both usual (not segmented) and segmented HPO tasks
 - An argument to fill when submitting
- Support separating input for each segment
 - To reduce the load of the sites
- Tested with 15 GANs
 - 3 particle types \times 5 η slices
- Plot on the right is from a 10K
 epochs job from the BNL GPU site y[∞]
 - The training ideally needs 1
 million epochs and a dedicated
 offline analysis is required

Input dataset (PID 22, $0 < |\eta| < 0.05$): pid22_eta_0_5.v02.tar



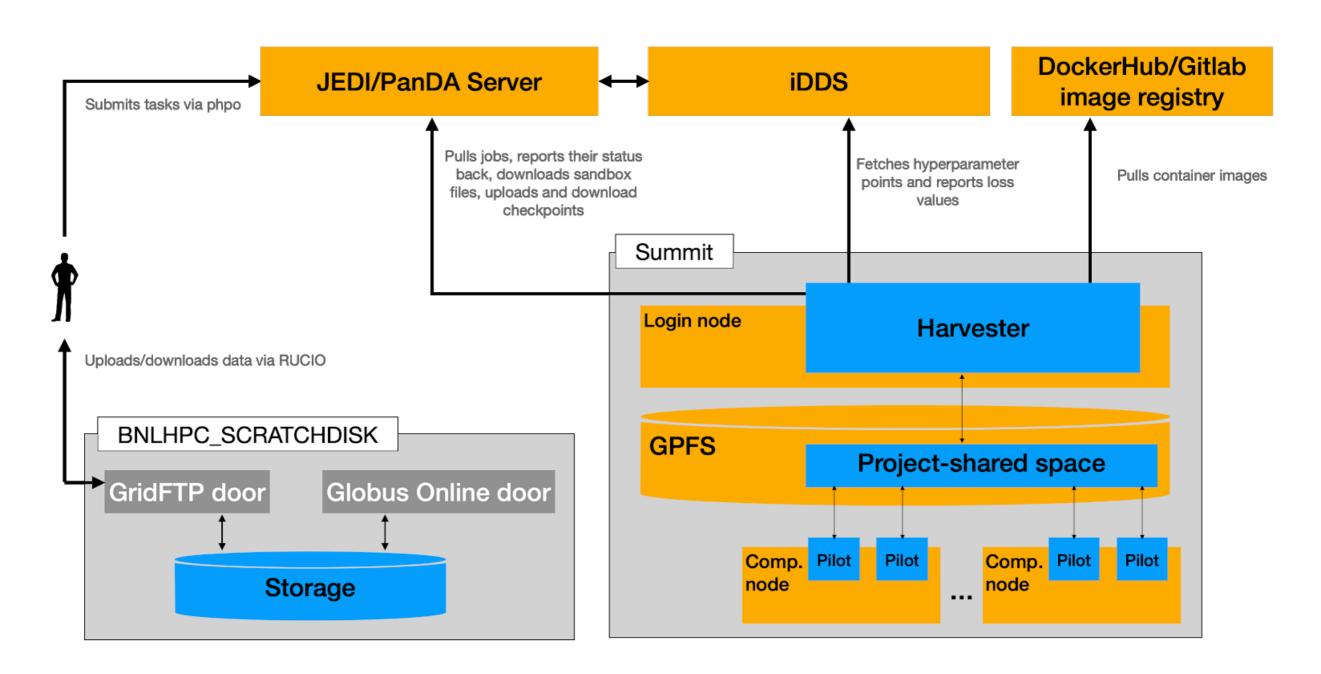
HPCs as GPU resources

- Summit as an example
 - 4608 computer nodes
 - 2 Processors x 22 cores / node
 - 6 V100 GPUs / node
 - Wonderful workstation for ML/HPO

- Challenges
 - Short wall time
 - Standard Grid services and workflows unavailable or suboptimal

Integration map on Summit

- Harvester is a key component in the HPC environment
 - Need to connect it with JEDI, iDDS and image repository



Challenges on Summit / HPC

- * Various issues need to be addressed for HPCs, which are different among HPCs. For Summit, there are following striking factors:
 - 1) PowerPC architecture a non-x86 architecture
 - Encounter different compilers for PowerPC 😐
 - Docker image is architecture-dependent; not straightforward to provide for a production service 😕
 - 2) Short walltime 2h for each job*
 - Checkpointing is almost always needed
 - 3) No network inbound/outbound connectivity of worker nodes
 - Requires all demands to be downloaded in advance
 - This hurts a lot for many payloads that are designed without this limitation 😕

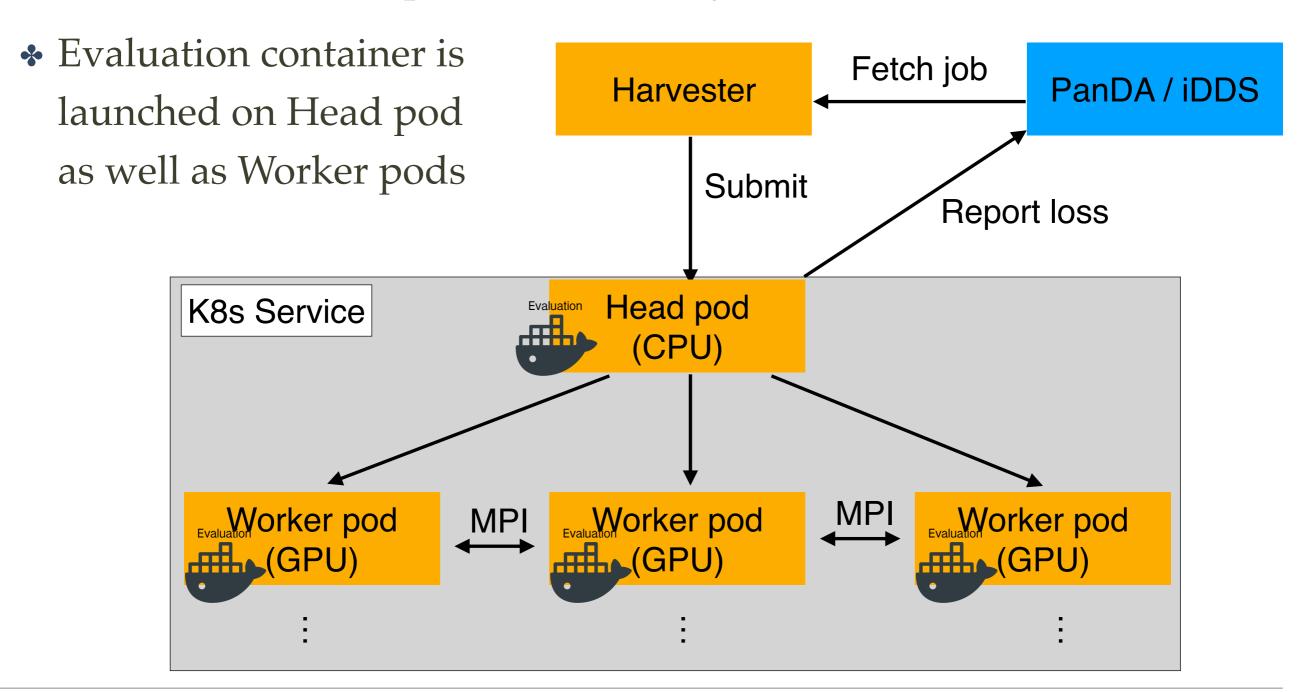
*1-45 nodes: 2h, 46-91 nodes: 6h, 92-921 nodes: 12h, 922-4608 nodes: 24h

Distributed training on commercial cloud

- Commercial cloud is one of the best places for distributed training
 - GPUs on the grid are mostly for single-GPU training
 - HPCs have many development and operational challenges
- So far in the R&D phase
 - Big investment for pledged GPU would be a bit risky since there are not many real use cases now
 - Should be prepared since distributed training is quite popular outside of HEP
- Horovod is currently being experimenting
 - A useable Evaluation container is created, to be tested with multi-GPU resources.
 - Open to support other distributed solutions, e.g. <u>DASK</u>, <u>Ray</u>

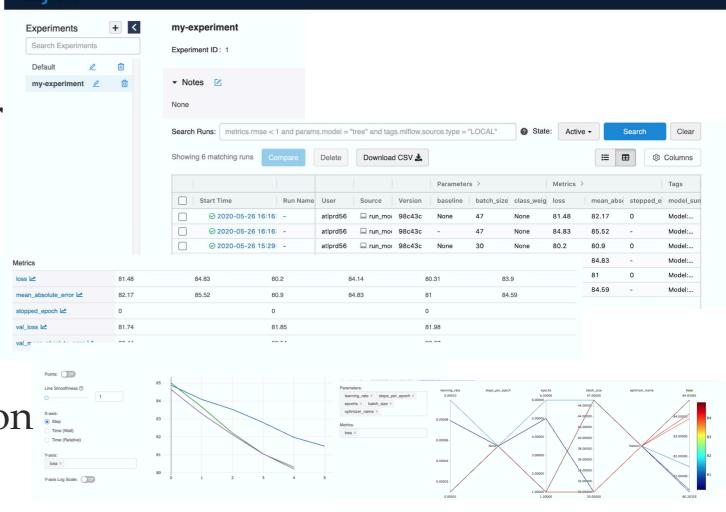
(Simplified) Integration map on Amazon K8s

- Horovodrun (MPI launcher) runs on the Head pod
- Number of Worker pods is scalable by K8s



Visualisation support

- * A visualisation tool MLflow is turned on in EvaluationContainer
 - Useful for offline visualisation as it is part of the output
- \bullet An α -version of the tool also integrated into PanDA Monitoring system
 - Fetch output from Evaluation container (training job) and spin-up an MLFlow container to display results
 - Extendable to other nice visualisation tools (Neptune, WandB, Tensorboard, etc.) if outputs match the visualisation backend or if additional conversion step is implemented



Summary (1)

- Goal of the project is to provide an ML/HPO service at ATLAS
 - To fulfil the demands that are expected from ML-topical physics, in particular in HL-LHC when larger dataset comes
 - An ATLAS directed work, but could be used by others as well
- The HPO workflow is developed and tested
 - "Ask" and "tell" are separated such that they are incorporated into ATLAS PanDA system
 - Docker container is used to preserve rapidly changing ML libraries
 - Tested with several use cases in ATLAS
 - Documented what need to change for a user with a mature training code

Summary (2)

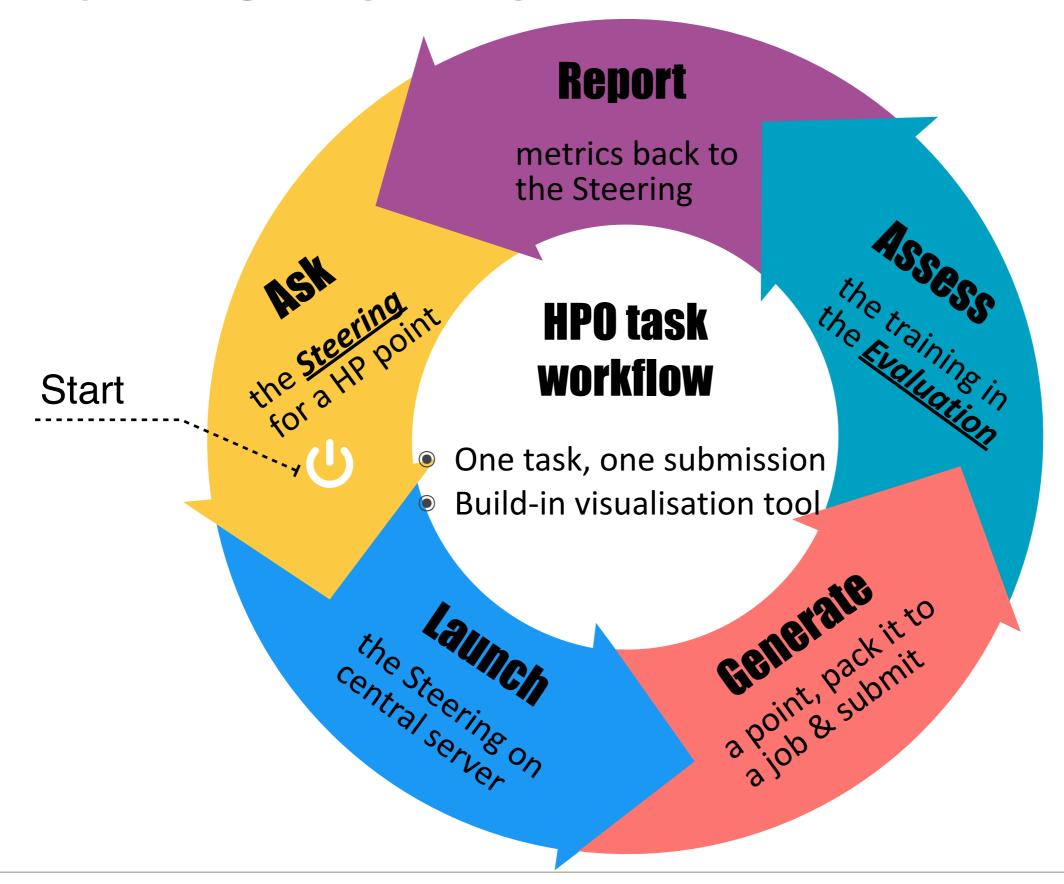
- Special scenarios
 - Distributed training
 - Some challenges were faced on Summit
 - Commercial Cloud (AWS) is currently being R&D
 - Segmented HPO
 - Implemented and tested with succeed
 - Convenient framework to train hundreds of models in one go;
 quite useful if ATLAS migrates to ML-based simulation
- Visualisation being supported centrally via the PanDA Monitoring system
 - Many new ideas can be implemented

Backup

Documentations

- Walk-through the Calo Image-based DNN example
 - SteeringContainer: https://gitlab.cern.ch/zhangruihpc/
 SteeringContainer
 - EvaluationContainer: https://gitlab.cern.ch/zhangruihpc/
 EvaluationContainer
- How to submit HPO task
 - https://twiki.cern.ch/twiki/bin/view/PanDA/PandaHPO
- iDDS Readme about the interfaces of ask-and-tell pattern
 - https://idds.readthedocs.io/en/latest/usecases/
 hyperparemeter_optimization.html

The HPO workflow



Steering container

- Run on central servers
- One container for all users
- Rich optimization algorithms
- Unified search space format

Report

metrics back to the Steering

HPO task workflow

One task, one submission

Build-in visualisation too

Evaluation container

- Run on Grid sites
- Encapsulate training job
- User customizable
- Accessible to data on Grid

the training in

checkpointing

- In case of short walltime on sites
- Periodically upload checkpoints to Grid
- Download the checkpoint when retrying
- Resume training if checkpoint is found

22

More references

- Summit/HPC distributed training
- New workflows for HPC
- Summit/HPC challenges
- New workflows
- * 4th Inter-experiment Machine Learning Workshop
- Future analysis facility
- * AI for Big data