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(Z. Marshall)

The bulk of the simulation
time is spent in the EM calo

Motivation

(2010)EPJ C 70 (2010) 823

ttbar simulation:
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→ Replacing the calorimeter simulation is therefore the first priority for an efficient fast simulation approach

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SOFT-2010-01/
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Fast Simulation in ATLAS

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

Baseline:
60% FastCaloSim
40% FullSim

Conservative:
75% FastCaloSim
25% FullSim
Faster G4
Faster reconstruction

Aggressive:
90% FastCaloSim+Fast Inner Detector Sim
10% FullSim
Faster G4
Faster reconstruction

● A fast calorimeter simulation (FastCaloSim) is used in ATLAS since 2010 (arXiv:1005.4568)

● The tool that combines FastCaloSim with Geant4 in the rest of the detector is called AF2 (AtlFastII)

● About 50% of all simulations in ATLAS were done with AF2, and it was used in countless publications

→ It is a big challenge to improve over this already existing tool!

● Fast Simulation is a paramount component for computing plans for HL-LHC

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://arxiv.org/abs/1005.4568


  

4 / 19



  

Covering |h|<4.9

# Readout channels: ~190 k in total

# Samplings (layers of cells): 24 in total

System EM Barrel EM EndCap Hadronic EndCap Forward (FCAL) TileCal

#Channels 110k 64k 5.6k 3.5k 9.8k

Materials:
Liquid Argon + Lead, or copper or tungsten
Tile Cal: Steel + plastic

Crucial for photons & electrons, jets and missing energy reconstruction

The ATLAS Calorimeter System
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FastCaloSim Principle and G4 Input Samples
Parametrized calorimeter energy response of single particles, based on the Geant4 simulation, 
derived on a fine grid of energy and eta, separated into longitudinal and lateral components.

- Eta grid: 100 bins in size of 0.05 covering 0-5.0
- Energy grid: 17 discrete points from 64 MeV – 4.2 TeV (log spacing)

Photons: For the photon showers
Electrons(+/-): For the electron showers
Charged Pions: For all hadronic showers*

*other hadrons simulated to derive corrections

Single PionSingle Pion

longitudinal

lateral
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→ 1700 parametrization slices per particle,
     5100 parametrization slices in total

Particles generated with the particle gun on the calorimeter surface,
no calorimeter noise, no primary vertex smearing, no cross talk,
custom G4 hit merging scheme.



  

Energy deposit in each calorimeter layer along the shower axis and total energy

Problem: The energy deposits in the various layers are correlated with each other

Transformation to uncorrelated set of variables with principal component analysis, to reduce complexity

N Cumulative
distributions

G4 Inputs:
Energy fractions
Total energy
→ N inputs

N Gaussians PCA
PCA output data

N components

Inverse

error
function

1st PCA chain:

Example:
Photons 50 GeV

First principle component
is that eigenvector of the
covariance matrix with the
largest eigenvalue (variance)

1st PC

N outputs

Cumulative Output

Gaussianize

PCA performed using
TPrincipal class from Root
https://root.cern.ch/doc/master/classTPrincipal.html

Longitudinal Energy Parametrisation
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https://root.cern.ch/doc/master/classTPrincipal.html


  

These “PCA bins” are also used to
derive the shape parametrisation.

The 1st PCA chain is used
only to derive this binning.

Cumulative
distributions

G4 Inputs:
Energy fractions f
Total energy
→ N inputs

Gaussians PCA
PCA output data

N components

Inverse

error
function

Bin 1

Bin 5

Output is a set
of N linearly
uncorrelated,
Gaussian-like
distributions

2nd PCA chain (another PCA, but now in each of the “PCA bins“ from the 1st transformation):

The first and second principal
component are used to divide
the input data into quantiles.

Optional 2nd binning in
the 2nd component
(not shown)

→ typically 5-10 bins

Showers get classified
in these „PCA bins“

Longitudinal Energy Parametrisation

For simulation a „PCA bin“ is picked randomly, and then the chain is performed back-wards:

Gaussian
random
numbers

Inverse PCA
Uniform
numbers
[0,1]

Error

function

Inverse
Regression
Or Histogram

Inverse
PCA output
(Gaussians)

Simulated
Inputs
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Correlations between energies after PCA rotation:

Correlations between energies before PCA rotation, here for 65 GeV photons 0.2<|h|<0.25 :
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Longitudinal Energy Parametrisation: Decorrelation



  

- Energy parametrization efficiently validated with a toy simulation
  (=performing PCA chain backwards), ie. no object reconstruction

- Plots illustrate one specific parametrization slice: 1 TeV pions, eta 0.2

  → All energy fractions and total energy very decently modelled!

- 5 PCA bins sufficient for most parametrization slices

Longitudinal Energy Parametrisation: Validation
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G4
Toy simulation



  

2D histograms hold hit energy averaged over many showers,
integrated over a certain radial distance and 8 bins in the
angular direction.

Binning is coarser than the G4 hit granularity, but finer
than the calorimeter cell granularity.

We store one such histogram per particle, energy point,
eta bin, layer, PCA bin (ie. ~100k histograms).

These 2D histograms are derived during the parametrization
step, and then loaded into memory for the simulation step.

2D energy histogram treated like a PDF

→ Randomly sample hit positions from that PDF

→ Distribute energy to hits*: E
hit

 = E
layer

 / N
hits

*In a refinement, we weight the hit energies to assure the outer-most tails also get populated with energy

The number of hits is an important parameter to model energy fluctuations
a good starting point is to calculate it from the expected energy resolution:

sqrt(N
hits

)/N
hits

  = a / sqrt(E)   (sampling term of the energy resolution, a depends on the layer)

Lateral Energy Parametrisation („Shape“)
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H → H → gggg simulated with FastCaloSimV2 simulated with FastCaloSimV2
(Prototype version)(Prototype version)
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New developments: PCA Binning Optimisation

● Performance of the longitudinal energy parametrisation not 
great in a few specific slices, namely at eta 0.0, 2.5 and 3.2

● These etas correspond to transitions of calo material or 
geometry, but affect only electrons and photons

● In these cases leading PCs have non-Gaussian features
● Developed algorithm that tested many pre-defined PCA 

binning configurations, best one was selected based on chi2 
test of the PCA outputs after 2nd PCA transformation

● 60 parametrization slices have been optimized and 
improved that way
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New developments: Probabilistic reweighting of the total energy 14 / 19

● Total energy resolution in FCS larger than expected by G4 
(both in tail and core of the distribution)

● Effect is small, but consistently present in all parametrization 
slices (electrons, photons, pions)

● Probabilistic reweighting of energy during simulation 
such that it resembles G4 better:

Step1: Create probability histogram from toy-simulated FCS
energy / expected G4 energy and store it

Step2: During (actual) simulation, compare the simulated
total energy value with a uniform random number
RAN between 0 and 1:
If RAN < probability → Simulation result is accepted
If RAN > probability → Repeat simulation

● The beauty of this method is that the carefully constructed 
longitudinal correlations are retained

● Lower probability boundary value is tweaked for each 
parametrisation slice such that the reweighting results in the 
best possible agreement with G4

PCA bin 1
Even events



  

New developments: Energy dependence on Phi Impact Position 15 / 19

In the ATLAS EM calo, the cells are „accordion“ shaped
(to provide crackless phi symmetry). This difficult geometry
leads to an oscillation structure of the energy response
depending on the phi impact position („phimod“).

This behaviour is simulated in G4, but FastCaloSim knows
nothing about it (because FCS uses a simplified geometry
where cells are approximated by cuboids).

The energy calibration based on G4 then corrects for that
oscillation, that introduces a widening of the FCS resolution

→ We have introduced a new correction, that removes the
phimod dependence in the G4 input samples from which
the FCS parametrization is obtained

The FCS resolution is forced to the „corrected G4 resolution“
via the probabilistic reweighting during the energy simulation

Geant4



  

G4 + FCSV2: 26.419 +/- 1.197 sec

    G4 itself takes 26.32 +/- 1.111 sec
    FCSV2 takes 0.025 sec (estimated separately)

(G4+FastCaloGAN or AF3 would perform similarly)

Full G4: 228.89 +/- 10.1 sec

AF2:   27.18 +/- 1.6 sec

→ Factor 8-10 speed-up compared to Full G4

CPU time is still totally dominated by G4, the fast 
simulation itself is no bottle-neck.
Not sufficient for run-4, need to further reduce G4 
usage (ie. fast tracking, fast chain).

AtlFast3: Configuration and Performance
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AF3 is the new ATLAS Fast Simulation tool that is comprised of the following components:

- FastCaloSimV2 (for electrons and photons, low and high energetic hadrons)
- FastCaloGAN (for hadrons with medium energies (8-265 GeV) – see backup)
- Geant4 (very soft hadrons in the calo (E

kin
<0.4 GeV), all particles in muon system and inner detector)

- Muon Punch Through simulation (for hadrons - see backup)

CPU time for single photons (from 2018): CPU time for ttbar events (from 2020, no pile-up):



  

Latest validations (after Athena simulation and reconstruction)

f3 is the energy fraction deposited in the third calorimeter sampling
AF3 reproduced G4 perfectly, while AF2 significantly differs.
AF2 had problems modelling this energy fraction, in addition it was based on an older G4 version

17 / 19



  

● Latest AF3 version gives best agreement with G4 (2021 version includes the resolution correction)

● Energy calibration is important. In ATLAS we use a BDT-based calibration (arXiv:1908.00005):

- Each sample displayed here is using a dedicated calibration trained with the respective simulator,
  except for AF3 2021 that is calibrated based on the AF3 simulation from 2020

- Potential improvements expected from dedicated energy calibration trained on latest AF3 version 

18 / 19
Latest validations (after Athena simulation and reconstruction)

https://arxiv.org/abs/1908.00005


  

AF3 Release and Future Plans

Thanks US ATLAS Computing for the support! 

AF3 release is imminent. Will be used to resimulate ~7 billion AF2 events with AF3!

Another release is planned for LHC Run-3 (early 2022)
(Updated G4 version, improvements for FastCaloSim and FastCaloGAN)

Potential FCSV2 improvements:

● Phi modulation correction on hit level could bring resolution even closer to G4

● Correlated fluctuations between cells to improve pion and jet modelling (see backup),
could potentially also improve egamma shower shape variables in first sampling

● Mismodellings in Barrel-Endcap transition region (1.37<|h|<1.52), more studies needed

Publication plans:

● vCHEP paper submitted (~10 pages, to become public in May) 

● AF3 paper planned

19 / 19

https://indico.cern.ch/event/948465/
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FastCaloGAN

Generative Adversarial Network used to generate 
entire calo showers, trained on G4

GAN trained for each eta bin, inclusive in energy
(100 GANs per particle)

GANs exists also for photons/electrons, but we 
found it competetive and often better than FCS
only for pions

Simulation PUB note: http://cdsweb.cern.ch/record/2746032

http://cdsweb.cern.ch/record/2746032


  

In the latest AF3 configuration, we use a hybrid FastCaloSim/FastCaloGAN approach for pions:

Up to 8 GeV: FastCaloSim
16 GeV – 265 GeV: FastCaloGAN
524 GeV – 4 TeV: FastCaloSim

FastCaloGAN

Not straightforward to evaluate the best thresholds, since single pions are parametrized but ultimately jets
are what's needed in physics analysis, and each jet consist of many constituents, each with different energy



  

Muon Punch Through Simulation (Principle)

For high energetic hadrons, particle showers are sometimes not fully contained in the calorimeter.
Instead, they exit the calorimeter and enter the muon system, where they could be reconstructed
as fake muons.

FastCaloSim (or FastCaloGAN) cannot simulate such effects

AF3 includes a new dedicated simulation of muon punch through,
that creates such signatures depending on the initial particle
energy, type and eta.

The created punch though particles are then passed back to G4,
which takes care of the simulation in the muon system.



  

Interpolation between energy points

● G4 inputs simulated for fixed energies (17 points on a logarithmic scale, 64 MeV – 4 TeV)

● To simulate a truth particle with any energy value E
true

 :

● The parametrisation picked is determined randomly, depending on log E
true

:

- throw random number r [0,1]

- if ( (logE
true

-logE
below

)  / (logE
above

 - logE
below

 ) ) > r  → choose above point

  otherwise, choose below point

● The total energy response is interpolated using a spline:

logE
E

above

E
true

E
below

less likely

more likely



  

The „old FastCaloSim“ (implemented in AF2)

Lateral shower shape parametrization:

● Radial symmetric function centered around the impact point of
a particle in the calo layer (=3rd order polynomial function)

● Parameters obtained from a fit to the Geant4 single particle
lateral shape in each calo layer, for each particle type, energy,
|h|, shower depth bin

● Good average shower description, poor modelling of substructure

Longitudinal energy parametrisation:

● 2D histograms of energy vs. longitudinal shower depth
(=distance of the deposit from the calo surface),
for total energy and energy fraction per layer

● Correlations between the deposits in each layer
stored explicitely in correlation matrices

Photons 200 GeV, 0.2<|h|<0.25This software has been used when we say „fast simulation“ in
our physics papers. It uses Geant4 in the inner detector and
muon system, and FastCaloSim in the calorimeter system.

About 50% of all simulations in ATLAS are done with AtlFASTII.

ATL-PHYS-PUB-2010-013

https://cds.cern.ch/record/1300517


  

The ATLAS Calorimeter System: Different Geometries

FCAL

Tubes in a honeycomb structure

Tile Cal

Layers of Tiles

EM Calo

- 3 layers + presampler, with very different
  cell size and granularity
- Samplings folded in an accordion structure



  

Lateral Shape Parametrization: Simplified Geometry

The simulated hit energies sampled from the 2D histograms
have to be assigned to the physical calorimeter cells.

An important speed-up for this hit-to-cell assignment
is a simplification of the geometry in the EM calo:

Accordion shaped cells are approximated by cuboids

This simplification however comes with a price. The shower
shapes now deviate from the G4 simulation, and the energy
distribution needs to be corrected by randomly deplacing
hits in phi direction to re-emulate this accordion structure.

Corrected:Biased:



  

Correlated Fluctuations

Can we model the correlations of energy deposits between each cell?

This is for cells in the same calorimeter layer, in a given slice of eta and input energy.
Correlations between samplings are incorporated in the longitudinal parametrization

We have found better results are obtained in a finer grid than 5x5 cells.

→ We converged on a grid of 8x9 voxels in R-alpha plane (~half the cell size)
for the following studies.

Left: Pion lateral energy distribution
        averaged over 10k showers in a
        grid of 5x5 cells

Right: Energy distribution of a single
           shower compared to this average
           → ratio strongly deviates from 1

ATL-SOFT-PROC-2020-027

Voxel definition in R-alpha plane:

https://cds.cern.ch/record/2712930


  

Modelling Correlated Fluctuations with a VAE

ATL-SOFT-SLIDE-2020-008

https://cds.cern.ch/record/2706155


  

Modelling Correlated Fluctuations with a Multi-dimensional Gaussian

ATL-SOFT-SLIDE-2020-008

https://cds.cern.ch/record/2706155


  

Modelling Correlated Fluctuations: Results

Example of input Geant4 energy ratios
and energy ratios generated with the 
Gaussian method

Distribution in each voxel matches
extremely well!

Voxel definitions:

ATL-SOFT-PROC-2020-027

https://cds.cern.ch/record/2712930


  

Correlation coefficient of voxel 1
(center voxel) with each of the
other voxels

Points with a coefficient of 1 are
due the core (0-5 mm in R) voxels
in each alpha bin, which are identical 
and set to the average value across 
the core in the training input.

Agreement with Geant4 is good for 
both the VAE and Gaussian method

ATL-SOFT-PROC-2020-027Modelling Correlated Fluctuations: Results

Reminder of voxel definitions:

https://cds.cern.ch/record/2712930


  

Modelling Correlated Fluctuations: Results

RMS of the fluctuation of the average 
shape as a function of distance from the 
shower center.

Shown are for 16 GeV pions,
0.2 < |h | < 0.25 in EMB2.
PCA bin 1 is chosen because it has 
showers with significant energy in EMB2.

For FCS without the fluctuation models, 
the RMS is much smaller than in Geant4.

Both the VAE and Gaussian method 
agree much better, though correlated 
fluctuations are only applied in a limited 
range.

This validation is done on „closure test“ level, without passing events through reconstruction,
but using a reduced parametrization and calling the fast simulation methods.

ATL-SOFT-PROC-2020-027

https://cds.cern.ch/record/2712930


  

These plots are 
made after the
full MC chain is 
run in Athena:

FastCaloSim
→ Digitization
→ Reconstruction

Ultimate proof of 
concept would be 
validations of 
boosted objects 
and looking at jet 
sub-structure 
variables (TO DO)

Here the Multi-
Gaussian is used.

l: Energy weighted
distance of cell from the
shower center along
shower axis

ATL-SOFT-PROC-2020-027Modelling Correlated Fluctuations: Results

https://cds.cern.ch/record/2712930


  

● High Luminosity LHC expected to run 2027-2040 (after run-3 will end in 2024)

● HL-LHC will deliver 3000/fb (or more) at s=14 TeV

● Several detector upgrades planned (new electronics readout, new inner tracker, new trigger, …)

● Expect average pile-up of <m>=200 interactions
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a: Sampling term (choice of active/passive material, fluctuations in number of charged particles
    passing through active layers)
b: Constant term (cracks, dead material, dominant at high energies)
g: noise term (electronics, dominant at low energies)

ATLAS calorimeter design resolution:

Energy resolution in the calorimeter



  

Gentle Introduction to Principal Component Analysis (PCA)

PCA is based on linear algebra and a widely used technique, applied in many fields from neuroscience
to computer graphics. In the language of ML it is an unsupervised, non-parametric technique for
dimensionality reduction of complex datasets.

PCA identifies a list of principle axes, and then ranks them according to the amount of variance:
First principal component expresses the most amount of variance.
Each additional component is then orthogonal, and expresses less variance.
→ The most interesting dynamics occur for the first k dimensions.

The PCA is unique, ie. there are no parameters to tweak for this method.

However, in a first step it often makes sense to transform the data into appropriate coordinates,
(kernel transformation, eg. Gaussian transformation). This step is parametric.



  

Variational Auto Encoder (VAE)

A VAE consists of two connected neural networks, an encoder and a decoder, and a loss function.

- The encoder maps each input to a point and some spread in a lower dimensional latent space
  (using efficient compression)

- The decoder neural network maps from the latent space back to the “input space”, with the goal of
  reconstructing the given input.

To go from a standard encoder (that for example can memorize cat images) to a generative model
(that can generate a new cat image), add a constraint in the encoder to force it to generate latent
vectors that roughly follow a given prior. Therefore the loss function has two components:
- generative loss (measures how accurately the network reconstructs an image)
- latent loss (Kullback-Leibler divergence, measures how well the latent variables matches the prior)

http://kvfrans.com/variational-autoencoders-explained/

http://kvfrans.com/variational-autoencoders-explained/


  

Generative adversarial networks (GAN)

Very popular generative technique

Tremendous progress over the past years
in creating for example artificial photos

Goodfellow 2014 https://arxiv.org/abs/1406.2661

The GAN model architecture involves two sub-models:

- Generator model for generating new data instances

- Discriminator model for classifying whether generated 
examples are real, from the domain, or fake, generated by the 
generator model

The generator output is connected directly to the discriminator 
input. Through back-propagation, the discriminator's classification 
provides a signal that the generator uses to update its weights.

Proof of concept to apply this method to shower simulation: 
CaloGAN 2018 https://arxiv.org/pdf/1712.10321.pdf

https://arxiv.org/abs/1406.2661
https://arxiv.org/pdf/1712.10321.pdf
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