Assessing the CO_{2eq} footprint on an institute level

more sustainable science practice by cutting emissions in computing and flying

Jan Rybizki (born 346 ppm) | Max Planck Institute for Astronomy (MPIA) Heidelberg Sustainable HEP | Impulse Talk - 30th June 2021 (418 ppm)

Structure

Introduction

Overview MPIA emissions

Computing

Flying

Way forward

Introduction

Introduction

Oxfam

From our CO_{2ea} assessment: <u>Jahnke et. al (2020)</u>

Flying

Supercomputing facilities make up ~80% of electricity usage

German yearly average

German yearly average

German Pledge 2030

German yearly average

German Pledge 2030 (old)

German yearly average

during **COVID** times

German Pledge 2030 (old)

Question to the audience I

- What is the yearly average CO_{2eq} emission in your country?
- Bonus: How does the above number change if you include imported /exported goods' CO_{2eq} emissions

!! quick disclaimer !!

I am *not against* computing,
we just need to plan ahead
to be able to
adequately compute in the future

Question 1: how much electricity does Germany consume?

Question 1: how much electricity does Germany consume?

- \rightarrow 488 TWh (2019)
- \rightarrow 5.9 MWh per person per year

Question 1: how much electricity does Germany consume?

- \rightarrow 488 TWh (2019)
- \rightarrow 5.9 MWh per person per year

Question 2: how much CO_{2eq} does this emit?

Question 1: how much electricity does Germany consume?

- \rightarrow 488 TWh (2019)
- \rightarrow 5.9 MWh per person per year

Question 2: how much CO_{2eq} does this emit?

 \rightarrow ?? kg CO_{2eq} / MWh

Question 1: how much electricity does Germany consume?

- \rightarrow 488 TWh (2019)
- \rightarrow 5.9 MWh per person per year

Question 2: how much CO_{2eq} does this emit?

 \rightarrow ?? kg CO_{2eq} / MWh

a look into Germany's electricity mix...

*each country has a different mix of electricity sources

CO _{2eq} -Emissions German electricity mix [kg / MWh]										Quelle: EUPD Research 2021		
204	Jan	Feb	Mrz	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
00:00	349	227	297	294	314	362	408	413	450	368	433	396
01:00	346	222	293	287	305	348	399	401	443	362	429	390
02:00	342	217	293	284	301	341	390	393	438	352	425	387
03:00	341	216	290	284	302	340	385	393	437	359	426	385
04:00	343	220	297	290	306	344	386	399	442	368	430	388
05:00	355	232	310	301	319	357	393	414	455	389	441	400
06:00	367	247	322	304	318	360	389	421	464	407	451	414
07:00	373	253	311	288	295	342	360	403	449	407	450	418
08:00	374	253	290	263	268	318	327	373	419	400	440	419
09:00	367	247	273	235	242	294	296	346	393	386	430	416
10:00	359	239	253	203	216	274	273	322	366	372	420	410
11:00	354	232	240	183	200	259	257	302	341	361	412	407
12:00	350	229	235	172	192	250	247	291	324	351	412	409
13:00	353	228	238	167	189	245	242	288	315	349	424	419
14:00	364	233	246	168	189	245	242	292	320	356	444	431
15:00	380	244	263	176	197	251	250	306	340	374	469	437
16:00	389	258	292	198	210	265	269	328	377	398	476	429
17:00	379	264	323	239	240	288	300	360	420	413	460	417
18:00	373	260	335	279	276	320	333	390	454	411	454	418
19:00	372	259	333	301	305	352	364	414	462	404	456	421
20:00	368	254	330	306	324	376	393	427	462	400	460	422
21:00	363	246	326	307	332	388	409	431	468	394	456	418
22:00	359	243	323	305	333	386	413	432	468	386	454	416
23:00	351	235	316	296	326	383	417	432	457	373	448	409

Question 1: how much electricity does Germany consume?

- \rightarrow 488 TWh (2019)
- \rightarrow 5.9 MWh per person per year

Question 2: how much CO_{2eq} does this emit?

 \rightarrow 400kg CO_{2eq} / MWh

a look into Germany's electricity mix...

*each country has a different mix of electricity sources

Question 1: how much electricity does Germany consume?

- \rightarrow 488 TWh (2019)
- \rightarrow 5.9 MWh per person per year

Question 2: how much CO_{2eq} does this emit?

- \rightarrow 400kg CO $_{\rm 2eq}$ / MWh
- ightarrow 2.4 tCO_{2eq} per person per

a look into Germany's electricity mix...

*each country has a different mix of electricity sources

Average German uses

5.9 MWh per year = 1.5MWh (private) + 4.4MWh (work) of electricity

- Average German uses
 - **5.9 MWh per year** = 1.5MWh (private) + 4.4MWh (work) of electricity
- Per Astronomer (MPIA and Australian study), we use around
 - 20 MWh per year for supercomputing

- Average German uses
 - **5.9 MWh per year** = 1.5MWh (private) + 4.4MWh (work) of electricity
- Per Astronomer (MPIA and Australian study), we use around
 - 20 MWh per year for supercomputing

2.3 kW (200 cores) non-stop

Average German uses

5.9 MWh per year = 1.5MWh (private) + 4.4MWh (work) of electricity

Per Astronomer (MPIA and Australian study), we use around

20 MWh per year for supercomputing

2.3 kW (200 cores) non-stop

Average German uses

5.9 MWh per year = 1.5MWh (private) + 4.4MWh (work) of electricity

Per Astronomer (MPIA and Australian study), we use around

20 MWh per year for supercomputing

2.3 kW (200 cores) non-stop

Supercomputing put into perspective

Average German uses

5.9 MWh per year = 1.5MWh (private) + 4.4MWh (work) of electricity

Per Astronomer (MPIA and Australian study), we use around

20 MWh per year for supercomputing

2.3 kW (200 cores) non-stop

Supercomputing put into perspective

Amount of cores is an average - some use much more, some much less

Top MPIA users of MPCDF cluster in August 2020

Supercomputing put into perspective

Amount of cores is an average - some use much more, some much less

Top MPIA users of MPCDF cluster in August 2020

1800 cores

20 MWh put into perspective

20 MWh

20 MWh put into perspective

20 MWh put into perspective

CO_2 CO_2 CO₂ CO₂ 20 MWh put into perspective CO_2 CO_2 CO₂ CO₂ CO_2 CO_2 CO_2 CO_2 CO_2 CO_2 CO_2 CO₂ CO₂ CO₂ CO_2 CO_2 20 MWh CO₂ CO₂ CO₂ CO₂ CO_2 CO_2 CO₂

CO_2 CO_2 CO_2 CO₂ 20 MWh put into perspective CO_2 CO_2 CO₂ CO₂ CO₂ CO_2 CO_2 CO_2 CO_2 CO_2 CO_2 CO₂ CO2 CO₂ CO_2 CO_2 20 MWh CO₂ CO₂ CO₂ CO₂ CO_2 CO_2 CO₂

Question to the audience II

- What is the yearly average CO_{2eq} intensity for electricity in your country?
- At which time of the day/year does your institute consumes most/least electricity?

Question to the audience III

- What are the main computing resources you/your institute have/has access to?
- How much electricity is consumed there on your behalf and what are the resulting CO_{2ea} emissions?

Hardware life-cycle*

Hardware is used 5 years, after which maintenance gets really expensive

Production and shipping add 20-30% CO_{2ea} costs (at 100% utilization)

For office equipment it can be 50% or more

Check: https://ecoinfo.cnrs.fr/ecodiag-calcul/ to get life-cycle estimates

*mostly production and shipping vs. consumption

Electric supply - boundary conditions in the near future

- heating and mobility will get electrified → more demand
- nuclear and coal and gas need to be reduced \rightarrow less supply
- CO_{2eq} price tag will increase \rightarrow electricity will be more expensive
- share of renewables will increase \rightarrow volatile supply

An assessment of MPIA's travel activities

From the SAP system...

From the SAP system...

End date

Reason for journey

Question to the audience IV

- Do you have (can get) a list of business travel destinations for your institute?
- Guess how much more CO_{2eq} a senior Researcher emits compared to a PhD-student?

we draw a direct line on the globe

we draw a direct line on the globe → we assume return flight

we draw a direct line on the globe → we assume return flight → we add 20%

- < 500 km = no flights
- > 2000 km = 100% flights

We calculate the **CO**_{2eq}**emissions** from: travel-footprint-calculator.ir ap.omp.eu

So where is MPIA flying to?

Number of flights vs. CO_{2eq} emissions by destination

Overseas make up 15% of trips by number...

Number of flights vs. CO_{2eq} emissions by destination

Overseas make up 15% of trips by number...

Overseas

What if we want to travel to ...?

Duration of travel by reason for trips overseas

380t 3.8t/trip

Duration of travel by reason for trips overseas

Duration of travel by reason for trips overseas

Duration of travel by reason for trips overseas

Per year and researcher we have ~0.75 overseas flights (outside of the pandemic)

How did the pandemic affect us

How did the pandemic affect us

How did the pandemic affect us

Assessing the CO_{2eq} emissions:

Assessing the CO_{2eq} emissions:

- we know what are the biggest emitters of CO_{2eq}

Assessing the CO_{2eq} emissions:

- we know what are the biggest emitters of CO_{2eq}
- we can estimate how easy those can be reduced

Assessing the CO_{2eq} emissions:

- we know what are the biggest emitters of CO_{2eq}
- we can estimate how easy those can be reduced

Having an **aim**:

Assessing the CO_{2eq} emissions:

- we know what are the biggest emitters of CO_{2eq}
- we can estimate how easy those can be reduced

Having an **aim**:

- reduction plans per category of emissions

Assessing the CO_{2eq} emissions:

- we know what are the biggest emitters of CO_{2ea}
- we can estimate how easy those can be reduced

Having an **aim**:

- reduction plans per category of emissions
- orientation with general policy (e.g. 1/2 by 2030, 0 by 2040)

Let actions follow:

Let actions follow:

- implement specific CO_{2eq} emission reduction plans at your institute

Let actions follow:

- implement specific CO_{2eq} emission reduction plans at your institute
 - business travel policy
 - computing policy

Let actions follow:

- implement specific CO_{2eq} emission reduction plans at your institute
 - business travel policy
 - computing policy
- Needs organisational and infrastructure changes

Let actions follow:

- implement specific CO_{2ea} emission reduction plans at your institute
 - business travel policy
 - computing policy
- Needs organisational and infrastructure changes

Monitoring and Re-evaluation:

Let actions follow:

- implement specific CO_{2eq} emission reduction plans at your institute
 - business travel policy
 - computing policy
- Needs organisational and infrastructure changes

Monitoring and Re-evaluation:

- monitor emission trends on a yearly basis per category

Let actions follow:

- implement specific CO_{2eq} emission reduction plans at your institute
 - business travel policy
 - computing policy
- Needs organisational and infrastructure changes

Monitoring and Re-evaluation:

- monitor emission trends on a yearly basis per category
- evaluate your policy and adopt/change following reality check

General ideas flying

- don't fly (use train or virtual participation)

- don't fly (use train or virtual participation)
- don't fly very far (look for conferences on your continent)

- don't fly (use train or virtual participation)
- don't fly very far (look for conferences on your continent)
- when flying far make the most out of your stay

- don't fly (use train or virtual participation)
- don't fly very far (look for conferences on your continent)
- when flying far make the most out of your stay
- allow for remote participation when organizing a conference

General ideas computing

- reduce CO_{2ea}-intensity of the electricity (put solar panels on our roofs)

- reduce CO_{2ea}-intensity of the electricity (put solar panels on our roofs)
- improve utilization rate → reduce your hardware

- reduce CO_{2ea}-intensity of the electricity (put solar panels on our roofs)
- improve utilization rate → reduce your hardware
- compute where it is efficient (green cloud services, Iceland)

- reduce CO_{2ea}-intensity of the electricity (put solar panels on our roofs)
- improve utilization rate → reduce your hardware
- compute where it is efficient (green cloud services, Iceland)
- compute when electricity is greener (adjusted queue / clock speed)

- reduce CO_{2ea}-intensity of the electricity (put solar panels on our roofs)
- improve utilization rate → reduce your hardware
- compute where it is efficient (green cloud services, Iceland)
- compute when electricity is greener (adjusted queue / clock speed)
- reduce data volume (lossy compression if possible)

- reduce CO_{2ea}-intensity of the electricity (put solar panels on our roofs)
- improve utilization rate → reduce your hardware
- compute where it is efficient (green cloud services, Iceland)
- compute when electricity is greener (adjusted queue / clock speed)
- reduce data volume (lossy compression if possible)
- have data / processing demands in mind when planning experiments

- reduce CO_{2ea}-intensity of the electricity (put solar panels on our roofs)
- improve utilization rate → reduce your hardware
- compute where it is efficient (green cloud services, Iceland)
- compute when electricity is greener (adjusted queue / clock speed)
- reduce data volume (lossy compression if possible)
- have data / processing demands in mind when planning experiments
- share expensive simulations among the scientific community

- reduce CO_{2ea}-intensity of the electricity (put solar panels on our roofs)
- improve utilization rate → reduce your hardware
- compute where it is efficient (green cloud services, Iceland)
- compute when electricity is greener (adjusted queue / clock speed)
- reduce data volume (lossy compression if possible)
- have data / processing demands in mind when planning experiments
- share expensive simulations among the scientific community
- use computing waste heat

- reduce CO_{2ea}-intensity of the electricity (put solar panels on our roofs)
- improve utilization rate → reduce your hardware
- compute where it is efficient (green cloud services, Iceland)
- compute when electricity is greener (adjusted queue / clock speed)
- reduce data volume (lossy compression if possible)
- have data / processing demands in mind when planning experiments
- share expensive simulations among the scientific community
- use computing waste heat
- adapt codes to GPU usage

- reduce CO_{2ea}-intensity of the electricity (put solar panels on our roofs)
- improve utilization rate → reduce your hardware
- compute where it is efficient (green cloud services, Iceland)
- compute when electricity is greener (adjusted queue / clock speed)
- reduce data volume (lossy compression if possible)
- have data / processing demands in mind when planning experiments
- share expensive simulations among the scientific community
- use computing waste heat
- adapt codes to GPU usage
- teach efficient programming

Thank you for your attention!

Resources

Institute-wide infrastructure

https://labos1point5.org/

Travel emissions

https://travel-footprint-calculator.irap.omp.eu/

https://github.com/jan-rybizki/Business trips carbon footprint

https://www.atmosfair.de/en/offset/flight/