
Increase of Signal-over-BG: SiPMs

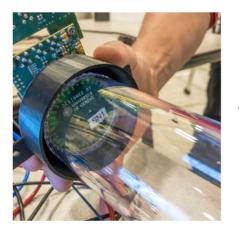
First full S14160-3050 SiPM PCB by Jülich under testing since beginning 2021

WOM and PMMA vessel design

- Transparency of WOM tube for visible light
- UV-transparency of PMMA vessel material
- PMMA vessel from one piece
 → minimize risk for LS leakage
 - → needed for pressure resistance in final detector
 - \rightarrow quite expensive for R&D phase: converge first for final design
 - → Need to decide what to use for
 a) 4-cell test detecor
 b) Full-ring demonstrator

Length depends on LS thickness

WOM and PMMA vessel design

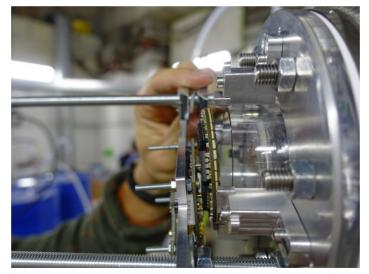


WOM dip-coating with WLS dye

Dip-coated WOM tube

- * Optical coupling:
 - \rightarrow So far, optical gel
 - \rightarrow Will try silicon gel pads
 - \rightarrow For final detector: optical glue?

- * Sufficient dye thickness (Measurement?)
- * WOM capture efficiency measurements
- * Optimal PMMA material and treatment
- * Optimal coating procedure (also wrt stress)
- * Dye for alternative blue \rightarrow green WLS


Optical coupling to 40-SiPM ring array

WOM/PMMA mechanical couplings

- Defined WOM position inside PMMA vessel Better & controllable optical SiPM-WOM coupling
 - \rightarrow 1st solutions at DESY 2019 testbeam
 - \rightarrow Better "engineer" solution for R&D phase needed
- "Mechanics" in general (SiPM→ FEE; cabling; heat removal; light-tight cover)

Bottom fixation of WOM

Top fixation of WOM, SiPM PCB and Music-board