Decay vessel - alternative design

Piet Wertelaers / piet.wertelaers@cern.ch

SHiP Joint physics and detector meeting - vacuum vessel workshop

12 Feb. 2021

The worry

Tolerances - (weld deformations) - Will it fit ?

Due to (personal view) requirements/challenges:

- * The bearing of a liquid scintillator
- * Tank must be narrow (thus flexible, thus heavily loaded welds)

This talk: alternative design:

- * Personal initiative ; unsolicited (.. and thus no CAD)
- * Based on *hypothesis* : drop the 2 requirements
- * Write-up: CERN-SHiP-INT-2021-002

Already some ideas in 2017; what has changed?

- 1. Vacuum liner no longer as sandwich, but as monolithic sheet.
- 2. Liner now welded to beam (still some studs, to pull liner compact).

Philosophy

Sandwich of sheets to provide stiffness.

Skeleton of beams: starting base, spacing of sheets (shear-proof anchoring), corner moment.

Large spacing, generous stiffness: lower shear, connection to Spectrometer vactank.

Inner sheet = vacuum liner.

Void volume : for scintillator blocks/plates.

Outer sheet = cover, must be dismountable, so : bolted (to beams).

(Inner sheet connected to beam by – intermittent – welds.)

Portals (51 in total) of 4 beams erected in situ.

Frustum: portals increase in size, beams aligned "skew".

Vacuum liner sheet machined at edges , as wide as possible (\approx 2 m).

Scint. cover sheet half as wide.

Cover sheets see unprecise beams: shimming, light tightness.

Vessel = train wagon on array of bogies : z-stroke , height adaptation, single z-constraining.

Dimensioning 1/6: modular bit of (side) wall

outer sheet: scintillator cover

mom. inertia : $I = I_b + 2 Z_{mod} t_s D^2$

static moment : $S = Z_{mod} t_s D$

line load : $\gamma = p Z_{mod}$

shear force : $Q(y) = \gamma y$

shear flux : $f_{sh}(y) = Q(y) \frac{S}{I}$

(hinged-end) sagitta $=\frac{5 \gamma L^4}{384 E I}$

Dimensioning 2/6: side wall of frustum

$$Z_{mod} = 0.99 \text{ m}$$

aperture (inner envelope) : $x_{ap} = 0.0348 z + 0.76 \text{ m}$ (traditional)

outer envelope : $x_{out} = 0.0492 z + 1.10 \text{ m}$ (shocking !)

Careful ! z=0 at start of vessel

Beams : standard I/H , but lightweight

Sheets : $t_s=$ 16 mm (25 in the last 3 units)

Dimensioning 3/6 : side wall : performance

Total free span L along y:

[m]

Dimensioning 4/6: portal: corner forces and moment

Dimensioning 5/6: portal corner: connector forces

Dimensioning 6/6: various

See Note for details

Elastic forcing (beams are not precise). Is possible, but tooling must be prepared.

Vacuum liner :

- tearing away fom beam under "vacuum" load ?
- risk of buckling under axial compression?

Mild problems. No need for *intense* stiffening / cross-bracing.

Tolerances / machining

Sheets: machining (vacuum liner: welding lip!)

Portal preparation :

- Local stiffeners and flange plates : added by welding
- ► Machining : through holes (only ?? hopefully yes ; to be tested)

Assembly and welding :

- Items always positioned against absolute coordinates, by surveying. Never against arrest.
- ► Thus : no tolerance pile-up

Assembly 1/3: Portal erection

Assembly 2/3 : Vacuum liner

Assembly 3/3: (Bolting of) scintillator cover

Special topics 1/4: pull vacliner compact (before welding..)

Special topics 2/4

Special topics 3/4

pumping stud (DN200)

vessel parts on bogies (at height)

Special topics 4/4 : vessel as a train (wagon)

Appendix 1/3: intermittent fillet welds vacuum liner to beam

Appendix 2/3: mass/size inventory

assigned to bogie :	y_{bogie} [m]	modules :	mass [t]
Α	-4.30	1 - 9	39.8
В	-4.80	10 - 16	41.4
С	-5.29	17 - 23	52.5
D	-5.75	24 - 30	66.2
E	-6.25	31 - 37	78.0
F	-6.74	38 - 44	90.7
G	-7.25	45 - 51	122.1
g	490.6		

${\sf Largest/heaviest\ items}$

item	module	notes	length [m]	mass [kg]
top/bottom beam	51	HE 1000 AA	4.98	1106
side beam	51	HE 1000 AA	13.26	2944
vacliner sheet, top/bottom	50 & 51	25 mm , 1.98 m	avg. 4.95	1936
vacliner sheet, side	50 & 51	25 mm , 1.98 m	avg. 9.91	3875
scint.cover, top/bottom	51	25 mm , 0.99 m	4.98	974
scint.cover, side	51	25 mm , 0.99 m	11.96	2339

Appendix 3/3: pre-tensioned studs for scintillator cover

	M12	M16	M20
	(x 1.75)	(x 2)	(x 2.5)
d_3 [mm]	9.853	13.546	17.933
D_{shaft} [mm]	8.4	11.5	15.2
$F_{n,stud}$ [kN]	44.3	83.1	145.2

Hydraulic tensioning cylinder : click here for demo video (in Web browser)