A possible Straw-Tube Detector Prototype for the Vacuum Vessel SHiP Joint Physics and Detector Meeting – Vacuum Vessel Workshop

Daniel Bick

Universität Hamburg

February 12, 2021

- Have not been following the vacuum vessel discussion very closely during the last months
- This talk will not cover the concept for a straw tracker inside the vacuum vessel
- However, we could very well test a planned 64-straw SST module prototype at an early stage in a possible vacuum vessel prototype

Main Goal of the Presentation

- Figure out what (if any) vacuum vessel prototypes are planned
- Make you aware of our interest to collaborate on any prototype vessels
- Briefly remind you what kind of straw tube modules we're working on

 $\triangleright\,$ so they can be considered in the design

SST in a Nutshell

UH #

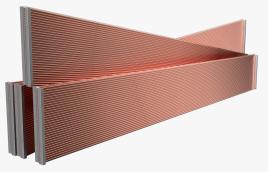
SST Institutes

- JINR Dubna
- SPPU St. Petersburg
- PNPI St. Petersburg
- MEPhI Moscow
- TSNU Kyiv
- CERN Geneva
- FZJ Jülich
- UHH Hamburg

SST Detector

- Located at the end of the vacuum vessel
- ${\sim}16\,000\,\text{ultra}$ thin straw tubes
- Active area: $5 \text{ m} \times 10 \text{ m}$
- Four identical tracking stations

Three+ design options


9 m 10 m

- Expandable frame, cemented pack, carbon fiber suspension
- Modular setup for some designs

SST R&D activities for module prototypes

UH <u></u>

- Generic straw tube detector development driven by SHiP design
- $\,\circ\,$ 5 m long Mylar tubes, 36 μm thick foil, 2 cm tube diameter (made by JINR Dubna)
- Horizontal operation ightarrow 5 m aperture
- $\, \circ \,$ Novel readout (combined chip development for SBT and SST \rightarrow see David's talk)

Modular Design

- 64 tubes per module (32×2)
- Module size: $5 \text{ m} \times 0.64 \text{ m} \times 0.1 \text{ m}$
- Plans for prototype, joint effort:
 - FZJ ZEA-1 (Engineering)
 - FZJ ZEA-2 (Electronics)
 - UHH

This can mean two things:

1 How is SST R&D connected to the vacuum vessel R&D

- Only detector inside the vessel
- Need for interfaces (LV, HV, gas supply, data)
- Common SBT and SST readout electronics development
- $\ensuremath{{\tt 2}}$ How will the SST physically be $\ensuremath{{\rm connected}}$ to the vacuum vessel
 - Strategy so far: use a separate structure (frame) to hold the detector
 - ▷ Detector design itself more or less decoupled from vacuum vessel (so not many details here)
 - Rough concept: insert it through opening in the top and hang it on the flange

Impact of SST to vacuum vessel

 $\,\circ\,$ Allow access, hanging (weight) and interfaces \rightarrow spectrometer section

Impact of vacuum vessel to SST

• Vacuum influences detector operation

(pressure difference, resulting forces, leak tightness, electronics cooling)

Opportunities for the SST

UH #

Clearly, the vacuum vessel and the SST influence each other!

A prototype vacuum tank offers great opportunities for testing a SST module prototype

Obvious

- Test of performance and mechanical stability under real vacuum conditions
- Data taking with cosmics always possible. Test beam?
- Test of interfaces / Vac-Tank feed-throughs (LV, HV, gas, readout)
- Cooling of electronics

Might be possible

- Monitor movement/deformation of straws during evacuation
- Check gas emission (need of mass spectrometer)
 - Leak testing
 - Outgassing of glue and other materials
- Monitor module during evacuation, e.g. with laser scanner (need of a vieing window)

- SST prototype should be tested under realistic vacuum conditions
- Any vacuum vessel prototyping would be interesting for this
 - adding a SST module should be considered
- If the full-size prototype would not fit, it is possible to build a shorter one.
 - Use same endplates, just with shorter tubes
 - Full size preferred
- Even a few short tubes would be interesting
 - probably not so much for mechanics but for operation and characterization