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* Instantons (Belavin et al. '75), Yang-Mills vacuum periodicity (callan et al. '76; Jackiw et al. '76)
U(1) axial anomaly + non-trivial vacuum -> no conserved axial current -> no NGB

* New problem: £qcp -> qcp + Gg—;Gﬁ;“éZV brings in QCD P, T (CP) violation. 6 < 1071

* PQ solution (77): 6 -> 6(x); V(6) s.t. {B) = 0. It predicts am = O scalar: the Axion
* Unexpectedly, the axion has also the right properties to account for the DM |

* Unsurprisingly, it raises new problems: Which is the origin of the PQ symmetry?
How can it remain preserved up to the required operator dimensiond = 10 ?

» If the axion exists, these problems must be solved | It is conceivable that
the solution could shed light on other unsolved issues of the Standard Model







[Peccel, Quinn (1977), Weinberg (1978),Wilczek (1978)]




Basic ingredients of the PQ solution
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*U(1) SSB: & -> v, eV q(x): V(a) = 0 -> shift symmetry a ->a+ Evq

*Couplings between the scalars and some quarks Q& qr -> Q. v, qr eia(x)/va
U(1) is then enforced by identifying chiral PQ charges X(Q) - X(q) = X(®)

*The symmetry must have a mixed U(1)-SU(3). anomaly: >4(Xq- Xq) 2 0
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- A scalar potential invariant under a global U(1): & -> e &, 3V(®)=0
*U(1) SSB: & -> v, eV q(x): V(a) = 0 -> shift symmetry a ->a+ Evq

*Couplings between the scalars and some quarks Q& qr -> Q. v, qr eia(x)/va
U(1) is then enforced by identifying chiral PQ charges X(Q) - X(q) = X(®)

*The symmetry must have a mixed U(1)-SU(3). anomaly: >4(Xq- Xq) 2 0

By redefining the quark fields in the basis of real masses Q. vq gr:
OGG -> (aw/va+ ©) GG - (aw/vd) GG

Instanton related non-perturbative QCD effects generate a potential

Vaeo(a) = -(mr fr)? cos(a/va) that drives (a/va) -> O at the minimum
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*As long as Aqep<T < fa (as << 1):

Instantons effects ~ e?™® negligible

U(1)rq broken only spontaneously,
ma=0, <ap> = Bofs, 60 €[0,2m]

V(a)

As soonas T~ Aqep  (as ~ 1):
U(1)rq explicit breaking ( e2™% ~ O(1) )
Ma(T) turns on. When mq(T) > 3H ~ 107 eV,

<ap> —> 0 and it starts oscillating undamped
« S —o—
4 B+ () fusin (fi) _ \\/ :

* Energy stored in oscillations behaves as CDM (pq ~ R™)
[Preskill, Wise, Wilczek (1983), Abott, Sikivie (1983), Dine, Fischler (1983)]
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* U(1)pq is anomalous. Is not a (fundamental) symmetry of the theory:
f[DAu D®] DyDw exp(iS) is not invariant under a PQ transformation

*In benchmark axion models, & is a complex scalar, and a gauge singlet.
Renormalizable terms p3®, @2, u@3, A®* do not break gauge or Lorentz
and are not forbidden. However, they would destroy PQ invariance.
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"E.g. g~1, A~Mp and v~ 109 GeV implyd = 10 [withg=gund = 9]

[Barr & Seckel '92, Kamionkowski & March-Russel '92, Holman et al. '92, Ghigna et al. '92]

- The axion scale: vq>> 10° GeV contributes to the EW stability problem

(analogously to other SM completions involving a new large UV scale: seesaw, GUTs, etc.)






U(1)rq should arise automatically as a consequence of first principles.
SSB requires VEVs = Lorentz singlets. Rely on local gauge symmetries




A sample of proposed solutions

U(1)rq should arise automatically as a consequence of first principles.
SSB requires VEVs = Lorentz singlets. Rely on local gauge symmetries

- Discrete gauge symm. Zn: @ -> e/ ™" @; 15" PQY” opt. A*"P"

RZC’UiF‘CS /4 10 Or lar'ger' [Krauss & Wilczek '89, Dias & al. ‘03, Carpenter & al. ‘09, Harigaya & al. '13]




A sample of proposed solutions

U(1)rq should arise automatically as a consequence of first principles.
SSB requires VEVs = Lorentz singlets. Rely on local gauge symmetries

- Discrete gauge symm. Zn: @ -> e/ ™" @; 15" PQY” opt. A*"P"

RZC’UiF’CS /4 10 Or I(lr'ger' [Krauss & Wilczek '89, Dias & al. ‘03, Carpenter & al. ‘09, Harigaya & al. '13]

* Local U(1) + 2 scalars with charges qi+q2 > 10 1sT BQ/ . \F91-92 (CPI*)QZ (P,)%

(91 and q2 relatively prime) [Barr & Seckel '92]




A sample of proposed solutions

U(1)rq should arise automatically as a consequence of first principles.
SSB requires VEVs = Lorentz singlets. Rely on local gauge symmetries

- Discrete gauge symm. Zn: @ -> e/ ™" @; 15" PQY" opt. A*"P"

R@C’Uir'es /4 10 Or IGr'ger' [Krauss & Wilczek '89, Dias & al. ‘03, Carpenter & al. ‘09, Harigaya & al. '13]

* Local U(1) + 2 scalars with charges qi+q2 > 10 157 P&Y: NI-92 (92 ()

(91 and q2 relatively prime) [Barr & Seckel '92]

» Non-Abelian SU(n). x SU(n)k, ax) € Ynxn.  Svd: Y=U Y VeV

For n>4 the ren. potential is very simple: V(Y) = (T-p?)°+ A
with  T=Tr(YY), A= Tr(mnr[Y'Y,2]) = $[T2%- Tr(Y'YY'Y)]

Automatic rephasing symm. Y -> e Y. Anomaly from KSVZ quarks QLY Qx
15" P& opt. A*"detY dim =n. This requires again n: 10

[Fong, EN '14 [in SU(3)xSU(3)], Di Luzio, Ubaldi, EN '17]






[Darmé & EN (2021)]
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* Take a local SU(m)xSU(n) (m > n) and a scalar multiplet Y4 ~ (m,n)
Gauge invariants are constructed with Kronecker & and Levi-Civita €

O-invariants can be red off the characteristic polynomial of Y'Y:
P(€) = det(EI-Y'Y) = Zx (-1)KCk €% Cu=Tr(mnr[Y'Y K])
They are obviously all Hermitian = accidental U(1): Y ->e® Y

g-invariants (non-Hermitian): there is none €qp.o Yai Ypj ... Yor = O.

Already for SU(3)xSU(2), V(Y) enjoys automatically an exact global U(1)
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[Darmeé & EN (2021)]

* Take a local SU(m)xSU(n) (m > n) and a scalar multiplet Y4 ~ (m,n)
Gauge invariants are constructed with Kronecker & and Levi-Civita €

O-invariants can be red off the characteristic polynomial of Y'Y:
P(€) = det(EI-Y'Y) = Tk (-1)KCk &7k Cx=Tr(mnr[Y'Y k])
They are obviously all Hermitian = accidental U(1): Y -> ey

g-invariants (non-Hermitian): there is none €qp.o Yai Ypj ... Yor = O.

Already for SU(3)xSU(2), V(Y) enjoys automatically an exact global U(1)

Note: for a Ynxn square matrix €ap..o €ij..r Yai Ypj...Yor o< det'Y z O
Such automatic exact U(1) symmetries are peculiar of local " rectangular’ symmetries
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*Exercise: take Gg = SU(3). x SU(2), take Ya ~ (3,2) and the SU(3)c
anomaly free set of quark multiplets Q.~ (3,1); qr~(1,2); tr~(1,1)

Rank(Y3x2) = 2, one massless quark. Add Z,~ (3,1): Mqc QLY qr + QL Z 12

* Two mixed invariants I¢ = Eqpy €ij Yai Ypj Zy * O Ul)e: 2Xy+Xz=0
ULyx U(1)z -> U(1) TIs = €ij(ZY)i (Z'Y); U(1)s Xy-Xz=0

Then U(1)y x U(1)z is completely broken, no residual U(1). No PQ symmetry ?
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A . 1 yl O . Py
Y =UsY V) ei® — ¥)="7%10 w ey, %
0 0 o B i, 1 i ez 2
Z—U3Z€ — <Z> —F= | %2 | € vz, Uy, 2 Tyaz
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Then U(1)y x U(1)z is completely broken, no residual U(1). No PQ symmetry ?

* Not so | We need to consider the vacuum structure of Y and Z

1 ylo

Y = U3 Y V) ¢t Y)=— o
= Us 9 € — (Y) = 0 y2 | v,
Z=U,Zée% — (2)= 75| =] ¢+ Vo =Ty,

VEVs of non-Hermitian operators can only lower the potential so they are maximized

Z3

max(l.) (Z) ~ (0,0,23)%, (Is)=0

Van = ple + Als +he.  —  —|u|{Le) — |A[{Z5) {111e1x<[(5> (Z) ~ (21,22,0)", (L) =0

cospy + @e(z)] |ple| = —|ul(Ie)
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Vacuum values of PQ breaking operators

Operators for which <O> -> 0 do not break the symmetries of the minimum,
thus the vacuum can enjoy a larger symmetry than the Lagrangian.
Scalar bosons associated with these symmetries remain massless iseorgi & pais 75]

* Let us recall however that U(1) symmt. breaking operators exist that do
not break the gauge symmetry. QCD can still induce via non-perturbative

effects an axion potential, while respecting gauge invariance.

* We can easily identify the NGB that remains (perturbatively) massless
and that enjoy the required shift symmetry.
In the vacuum determined by I, charges are related by Xz = - 2 Xy

Vy Vy
alxr) = =, —2—,
(z) UGSOy vaSO

Py > Py t+Evy
a(z) = @y — ZU—chz, Ve = vg + 4v? s.t. for ¢ €10,2m) O, — p,—2€v,
a(z) — a(z)+Ev,
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Promoting U(1) to a PQ symmt. requires a mixed QCD anomaly.
=> Quarks must transform under the U(1) symmt.
=> Hence they must couple to the scalar multiplets
=> Hence they must also transform under Gr

The non-Abelian local Gr thus is a flavour symmetry |




Any non-Abelian gauge symmetry generating a U(1)rq is a flavour symmetry

QY qr (SU(2)p x U(1)y vectorlike quarks)  or %Q 1Y qr H (SM EW chiral quarks)




The "PQ quality - flavour” connection

Any non-Abelian gauge symmetry generating a U(1)rq is a flavour symmetry

QY qgr (SU(2); x U(1)y vectorlike quarks)  or %Q .Y qr H (SM EW chiral quarks)

* We are led to consider models of flavour with a generic structure

_ 1 _ _ - _ - 1 _
L~QZa+ (ndQYdH+anXuH+n3QZu3H) +P(anWq+...) +. ..

with Z, X, Y scalar multiplets of some Gr. Possibly involving also
combinations of scalar fields W = W[Z,X,Y]. It can contain EW
vectorlike quarks (e.g. gr € SU(2)w). SM quarks masses and mixings

generated dynamically by specific <Z>, <X>, <¥> configurations, with
hierarchical singular values (for a proof of principle of the viability, Fong & EN '13]

The guiding principle is that a PQ symmetry of the required high
quality must arise automatically from Gr and the field content.
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The Yukawa couplings originate from the effective Lagrangian
1
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(nd@Y dH + k,Q X uH + £3Q Z us ﬁ)
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A glimpse on the generation of Yukawa hierarchies

Consider Gr=5SU(4). x [SU(3)4x SU(2),]r and the quark/scalar multiplets:
QL ~ (4a131)7 dqr ~~ (17171)) dr ~ (1a§7 1)) UR ~~ (171)§)7 tr ~ (1)1)1)
Y ~(4,3,1), X~ (4,1,2), Z~(4,1,1)

The Yukawa couplings originate from the effective Lagrangian

Ly ~QZqg+ % (nd@YdH—l—anXqu—l-n;;QZu;;I;’)

"Flavour relevant” renormalizable invariants and their action in the approx. in
which the svd L-matrices Ux,Uz -> Is (neglecting mixings, only hierarchies)

Ay =TrMor(Y1Y,2)] = 293 +y2v3+4393, (na>0) Y — (y,0,0)

Dx = Det[XTX] = 2222, (np < 0) X — (z,z)
gyz = €3€4 YYYZ — —2 Y1 Y2 Y3 24 ? — (y, €y, Ey)
Tyy =TeXXTYY] - a2y +adsd (r<0) ¥ @epe) X - (@e)

Tzx =Tr[ZZ1XXY, Tzy =Tx[ZZ'YYT] =0
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* Non-Abelian symm. can be directly interpreted as flavour symm. (whether for
KSVZ and/or SM quarks). A certain type of symm. have particularly interesting
features w.r. U(1)rq protection, flavour hierarchies, etc.

* They suggest that: some quark masses should have a different origin than
others; additional vectorlike quarks are most likely present (viol. CKM unit.)
Flavour gauge bosons can have relatively small masses mr ~ vq (My/M4); etc.

We are currently studying flavour groups that we would
never have considered had it not been for the axion !







The axion scale problem: scale vs. compact space radius

Consider the usual Mexican hat potential for a complex & hosting the axion

B

*» Scale of PQ symm. breaking: <®> = v,
(phase transition, primordial GW,...)

* Axion compact field space radius a € [0, 21 f,)
(suppression of axion couplings: a(x)/f.)

Va

Here vq= fq, but conceptually they are different quantities.
When the axion is hosted in more than one scalar multiplet: &; ~ v; edVi

a=2i(vi/fo) a with f&=Z; Xi® vi° enhancement by large charge values
[Clockwork mechanism: Choi & Im ‘16, Kaplan & Rattazzi ‘16, Giudice & McCullough ‘17 ...]

Consider a gauge group [SU(3)xSU(2)]™! and Y ~ (1n-1, 2n, 3n), Z~(3n-1,2n, 3n)
The potential V = %, e3€2Yn Yn Znat Yot has automatic symm. Xn1 = 2 X (X5 =0)

Then f& =2, Xn? va® & (1/3) v 4™ (after taking all v % v)
If quarks couple to Y1: QY1q so that X, are small, all axion
interactions are suppressed as 1/fq. For n~ 20, v ~ 100 GeV, v/M,~ 10"/






Can this yield a viable axion model ?

* Recall <Y> ~ (y1,y2,0)". To ensure a mass for tz, we need to choose
<Z>~(0,0,z3)" thatis <Y>and <Z> must be "misaligned”.
The vacuum is defined by <Is>=0and <Is>20  X(I.)=2Xy+ Xz=0

* Let us now compute the anomaly Apq = 2, XL - 24, Xr
3Xq-2Xq-Xt =2(Xq-Xg)*+ (KXq-Xt) =2Xy+ Xz = X(Tg) =0

Thus <I¢> breaks U(1l)y x U(1)z -> U(1). which is non-anomalous !
Then U(1): is not a PQ symmetry, and its (exactly massless) NGB does
not solve the strong CP problem.




Can this yield a viable axion model ?

* Recall <Y> ~ (y1,y2,0)". To ensure a mass for tz, we need to choose
<Z>~(0,0,z3)" thatis <Y>and <Z> must be "misaligned”.
The vacuum is defined by <Is>=0and <Is>20  X(I.)=2Xy+ Xz=0

* Let us now compute the anomaly Apq = 2, XL - 24, Xr
3Xq-2Xq-Xt =2(Xq-Xg)*+ (KXq-Xt) =2Xy+ Xz = X(Tg) =0

Thus <I¢> breaks U(1l)y x U(1)z -> U(1). which is non-anomalous !
Then U(1): is not a PQ symmetry, and its (exactly massless) NGB does
not solve the strong CP problem.

Is this just an unlucky accident occurring with the
flavour SU(3). x SU(2)r gauge symmetry ?







An upper limit on the quality of the PQ symmetry

Consider a gauge symmetry Gr=[1T; SU(mz)]L x [TT. SU(n.)]r acting on a certain
set of scalar multiplets in bi-fundamentals Y''e SU(m¢) x SU(n.) of the me, n;

gauge factors, and on N=2; Ae me=2. A- n- LH and RH quarks also in fundamentals
(A2 - isospin multiplicity). We can write a certain humber of gauge invariant quark-

scalar couplings: = n'"Q¢ Y*'q. (n': O(1) constants; ¥ names’ not indices; H/A when needed)

Assuming that all the quarks acquire masses (det M,z 0), it can be shown that:

1. for any global U(1) there exists at least one scalar operator O(Y) with a
non-vanishing VEV and charge equal to the U(1)-SU(3). anomaly: Xowy) = Ac# O

2. modulo the coupling constants n'"we have: <Xowyy = A*N det Yo'
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Consider a gauge symmetry Gr=[1T; SU(mz)]L x [TT. SU(n.)]r acting on a certain
set of scalar multiplets in bi-fundamentals Y''e SU(m¢) x SU(n.) of the me, n;

gauge factors, and on N=2; Ae me=2. A- n- LH and RH quarks also in fundamentals
(A2 - isospin multiplicity). We can write a certain humber of gauge invariant quark-
scalar couplings: > ntrQe y“Qr (n®: O(1) constants; ! *names’ not indices; H/A when needed)

Assuming that all the quarks acquire masses (det M,z 0), it can be shown that:

1. for any global U(1) there exists at least one scalar operator O(Y) with a
non-vanishing VEV and charge equal to the U(1)-SU(3). anomaly: Xowy) = Ac# O

2. modulo the coupling constants n'"we have: <Xowyy = A*N det Yo'

1. implies that any anomalous U(1) suffers explicit breaking at least at d = N.
This provides an upper limit on the quality of Gr-protected PQ symmetries.

2. implies that this source of breaking is removed as det Y;*' -> 0. Providing
an unexpected connection between PQ quality and Yukawa hierarchies |




