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•The symmetry must have a mixed U(1)-SU(3)c  anomaly: Σq(XQ - Xq) ≠ 0

By redefining the quark fields in the basis of real masses Q̄L va qR:       
   𝛩GG̃     ->       (a(x)/va + 𝛩) GG̃     ->      (a(x)/va) GG̃  

Instanton related non-perturbative QCD effects generate a potential
  VQCD(a) = -(mπ fπ)2 cos(a/va)  that drives   <a/va> -> 0 at the minimum
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
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ä+ 3Hȧ ⇡ 0 (10)
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• Αs soon as Τ ~ ΛQCD   (αs ~ 1):

• Energy stored in oscillations behaves as CDM  (ρa ~ R-3)
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Very small mass, yet cold dark matter[Preskill, Wise, Wilczek (1983), Abott, Sikivie (1983), Dine, Fischler (1983)]



The PQ "origin" and "quality" problems



The PQ "origin" and "quality" problems
• U(1)PQ is anomalous. Is not a (fundamental) symmetry of the theory: 

  ∫[DAµ DΦ] DψDψ̄  exp(iS)  is not invariant under a PQ transformation 
a 

•In benchmark axion models, Φ is a complex scalar, and a gauge singlet.             
aRenormalizable terms µ3Φ, µ2Φ2, µΦ3, λΦ4 do not break gauge or Lorentz 
aand are not forbidden.  However, they would destroy PQ invariance.



The PQ "origin" and "quality" problems
• U(1)PQ is anomalous. Is not a (fundamental) symmetry of the theory: 

  ∫[DAµ DΦ] DψDψ̄  exp(iS)  is not invariant under a PQ transformation 
a 

•In benchmark axion models, Φ is a complex scalar, and a gauge singlet.             
aRenormalizable terms µ3Φ, µ2Φ2, µΦ3, λΦ4 do not break gauge or Lorentz 
aand are not forbidden.  However, they would destroy PQ invariance.

•Non-pt. quantum gravity effects. Controlled solutions:  MP
3 e-Swh  Φ + h.c. 

   [Euclid. wormholes]. Safe suppression requires Swh > 190 (while typical Swh ~ Log(MP/va) ~ 15)  
   [Kallosh et al. ’95, Alonso & Urbano ’17, Alvey & Escudero ‘20]



The PQ "origin" and "quality" problems
• U(1)PQ is anomalous. Is not a (fundamental) symmetry of the theory: 

  ∫[DAµ DΦ] DψDψ̄  exp(iS)  is not invariant under a PQ transformation 
a 

•In benchmark axion models, Φ is a complex scalar, and a gauge singlet.             
aRenormalizable terms µ3Φ, µ2Φ2, µΦ3, λΦ4 do not break gauge or Lorentz 
aand are not forbidden.  However, they would destroy PQ invariance.

•PQ breaking effectv. opts. g Φd/Λd-4 -> Eng. density eff.opt. < 10-10 VQCD(a)                               
athat is, we need to require:  g (va/Λ)d-4  < 10-10 (mπ fπ/va2)2     
•
a  E.g.   g~1,  Λ ~ MP    and   va ~ 1010 GeV  imply d  ≳ 10 [with g = gwh, d  ≳ 9 ] 

a         [Barr & Seckel ’92, Kamionkowski & March-Russel ’92, Holman et al. ’92, Ghigna et al. ’92] Escudero ‘20]

•Non-pt. quantum gravity effects. Controlled solutions:  MP
3 e-Swh  Φ + h.c. 

   [Euclid. wormholes]. Safe suppression requires Swh > 190 (while typical Swh ~ Log(MP/va) ~ 15)  
   [Kallosh et al. ’95, Alonso & Urbano ’17, Alvey & Escudero ‘20]



The PQ "origin" and "quality" problems
• U(1)PQ is anomalous. Is not a (fundamental) symmetry of the theory: 

  ∫[DAµ DΦ] DψDψ̄  exp(iS)  is not invariant under a PQ transformation 
a 

•In benchmark axion models, Φ is a complex scalar, and a gauge singlet.             
aRenormalizable terms µ3Φ, µ2Φ2, µΦ3, λΦ4 do not break gauge or Lorentz 
aand are not forbidden.  However, they would destroy PQ invariance.

•PQ breaking effectv. opts. g Φd/Λd-4 -> Eng. density eff.opt. < 10-10 VQCD(a)                               
athat is, we need to require:  g (va/Λ)d-4  < 10-10 (mπ fπ/va2)2     
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a         [Barr & Seckel ’92, Kamionkowski & March-Russel ’92, Holman et al. ’92, Ghigna et al. ’92] Escudero ‘20]

•Non-pt. quantum gravity effects. Controlled solutions:  MP
3 e-Swh  Φ + h.c. 

   [Euclid. wormholes]. Safe suppression requires Swh > 190 (while typical Swh ~ Log(MP/va) ~ 15)  
   [Kallosh et al. ’95, Alonso & Urbano ’17, Alvey & Escudero ‘20]

•The axion scale: va >> 108 GeV contributes to the EW stability problem           
   (analogously to other SM completions involving a new large  UV scale:  seesaw, GUTs, etc.)
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A sample of proposed solutions
U(1)PQ should arise automatically as a consequence of first principles. 
SSB requires VEVs ⇛ Lorentz singlets. Rely on local gauge symmetries 

• Non-Abelian SU(n)L x SU(n)R,  a(x) ∈ Yn×n.      Svd:  Y = U Ŷ Vt eia/va  

a
 

    For  n > 4  the  ren. potential is very simple:            V(Y) = (T-µ2)2 ± A  
   with     T = Tr(YtY),      A = Tr(mnr[YtY,2])  =  ½[T2- Tr(YtYYtY)] 
a 
  Automatic rephasing symm. Y -> eiξ Y.  Anomaly from KSVZ quarks Q̄L YQR   
  1st  PQ   opt.  Λ4-n  det Y    dim = n.  This requires  again   n ≥  10     

                                                                                            [Fong, EN ’14 [in SU(3)xSU(3)], Di Luzio, Ubaldi, EN ’17]       

•Discrete gauge symm. ℤn: Φ -> ei 2π/n Φ;   1st  PQ   opt.  Λ4-n Φn   

 Requires  ℤ10  or larger [Krauss & Wilczek ’89, Dias & al. ’03, Carpenter & al. ’09, Harigaya & al. ’13]  

• Local U(1) + 2 scalars with charges q1+q2  ≥ 10  1st  PQ : Λ4-q1-q2 (Φ1
t)q2 (Φ2)q1 

  (q1 and q2 relatively prime)                                                     [Barr & Seckel ’92]   
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Already for SU(3)xSU(2), V(Y) enjoys  automatically  an exact  global U(1)  
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•Take a local SU(m)xSU(n) (m > n) and a scalar multiplet Yαi ∼ (m,n̄)   
  Gauge invariants are constructed with Kronecker δ and Levi-Civita ε 
a 

 δ-ιnvariants can be red off the characteristic polynomial of YtY: 
         P(ξ) = det(ξI-YtY) = Σk  (-1)k Ck  ξn-k      Ck =Tr(mnr[YtY,k])         
 They are obviously all Hermitian  ⇛  accidental U(1):   Y -> eiξ Y
a

 ε-ιnvariants (non-Hermitian): there is none   εαβ…σ  Yαi Yβj …Yσr = 0. 
  
Already for SU(3)xSU(2), V(Y) enjoys  automatically  an exact  global U(1)  

Note: for a Ynxn square matrix   εαβ…σ  εij…r Yαi Yβj …Yσr  det Y  ≠  0  
Such automatic exact U(1) symmetries are peculiar of local `rectangular’ symmetries
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•Exercise: take GF = SU(3)L x SU(2)R, take Yαi ~ (3,2̄) and the SU(3)C   
 anomaly free set of quark multiplets   QL~ (3,1);   qR ~ (1,2);    tR ~ (1,1)  
a 
 Rank(Y3x2) = 2, one massless quark. Add Zα ~ (3,1):  Mq ⊂ Q̄L Y qR  + Q̄L Z tR 
a 

•Two mixed invariants   Iε = εαβγ εij Yαi Yβj Zγ ≠ 0   U(1)ε :     2XY + XZ = 0 
    U(1)Y x U(1)Z -> U(1)     Iδ = εij (ZtY)i  (ZtY)j               U(1)δ :      XY - XZ = 0 

  Then U(1)Y x U(1)Z  is completely broken, no residual U(1).  No PQ symmetry ?

• Not so ! We need to consider the vacuum structure of Y and Z 

VEVs of non-Hermitian operators can only lower the potential so they are maximized 



Operators for which <O> -> 0 do not break the symmetries of the minimum, 
 thus the vacuum can enjoy a larger symmetry than the Lagrangian.    

Scalar bosons associated with these symmetries remain massless [Georgi & Pais ’75]

Vacuum values of PQ breaking operators



Operators for which <O> -> 0 do not break the symmetries of the minimum, 
 thus the vacuum can enjoy a larger symmetry than the Lagrangian.    

Scalar bosons associated with these symmetries remain massless [Georgi & Pais ’75]

• Let us recall however that U(1) symmt. breaking operators exist that do 
not break the gauge symmetry. QCD can still induce via non-perturbative 
effects an axion potential, while respecting gauge invariance. 
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• We can easily identify the NGB that remains (perturbatively) massless 
   and that enjoy the required shift symmetry.  
   In the vacuum determined by Iε, charges are related by XZ = - 2 XY

Operators for which <O> -> 0 do not break the symmetries of the minimum, 
 thus the vacuum can enjoy a larger symmetry than the Lagrangian.    

Scalar bosons associated with these symmetries remain massless [Georgi & Pais ’75]

• Let us recall however that U(1) symmt. breaking operators exist that do 
not break the gauge symmetry. QCD can still induce via non-perturbative 
effects an axion potential, while respecting gauge invariance. 

Vacuum values of PQ breaking operators
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Can symmetries of this type be promoted to realistic PQ 
symmetries ? Can we learn something beyond `axion issues’ ?

Origin + quality of acc. symmt. <= non-Abelian `rectangular’     
                                                   gauge group GF acting on  
                                                   some set of scalar multiplets. 

Promoting U(1) to a PQ symmt. requires a mixed QCD anomaly. 
              =>  Quarks must transform under the U(1) symmt.  
              =>  Hence they must couple to the scalar multiplets 
              =>  Hence they must also transform under GF

The non-Abelian local GF  thus is a flavour symmetry !
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The “PQ  quality - flavour” connection

• We are led to consider models of flavour with a generic structure 

with Z, X, Y scalar multiplets of some GF. Possibly  involving also 
combinations of scalar fields W = W[Z,X,Y].  It can contain EW 
vectorlike quarks (e.g. qR ∈ SU(2)W). SM quarks masses and mixings 
generated dynamically by specific <Z>, <X>, <Y> configurations, with 
hierarchical singular values  [for a proof of principle of the viability, Fong & EN ’13] 
a 

The guiding principle is that a PQ symmetry of the required high 
quality must arise automatically from GF and the field content.

Any non-Abelian gauge symmetry generating a U(1)PQ is a flavour symmetry
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•They suggest that: some quark masses should have a different origin than 
 others; additional vectorlike quarks are most likely present (viol. CKM unit.)  
 Flavour gauge bosons can have relatively small masses  mF ~ va (mu/mt); etc.   

• Non-Abelian symm. can be directly interpreted as flavour symm. (whether for 
  KSVZ and/or SM quarks). A certain type of symm. have particularly interesting 
  features w.r. U(1)PQ protection, flavour hierarchies, etc.

•The PQ mechanism provides an elegant and convincing solution to the strong  
  CP problem. However, we do not yet have a similarly elegant and convincing 
  model enforcing this mechanism in a natural way

•The scalar potential that breaks spont. U(1)PQ can automatically be U(1) invariant 
 and protected from higher-dim PQ opts. if the scalars transform under some  
 suitable local symmetry (Abelian continuous/discrete or non-Abelian) 

We are currently studying flavour groups that we would  
never have considered had it not been for the axion !





The axion scale problem: scale vs. compact space radius
Consider the usual Mexican hat potential for a complex Φ hosting the axion

Then    fa2 = Σn  Xn2  vn2 ≈  (1/3) v2 4n+1   (after taking all vn ≈ v) 
If  quarks couple to Y1 : Q̄ Y1 q  so that Xq are small, all axion  
interactions  are suppressed as  1/fa . For n ~ 20, v ~ 100 GeV,  v/Mp ~ 10-17

va

•  Scale of PQ symm. breaking:    <Φ> = va  
    (phase transition, primordial GW,…)   
• Axion compact field space radius a ∈ [0, 2π fa) 
   (suppression of axion couplings:  a(x)/fa)

Here va = fa, but conceptually they are different quantities.  
When the axion is  hosted in more than one scalar multiplet:  Φi ~ vi eai/vi    
a = Σi (vi/fa) ai   with  fa2 = Σi  Xi2  vi2   enhancement by large charge values 

[Clockwork mechanism: Choi & Im ’16, Kaplan & Rattazzi ’16, Giudice & McCullough ’17 …]

Consider a gauge group [SU(3)xSU(2)]n+1  and Y ~ (1n-1, 2n, 3n),  Σ~(3n-1,2̄n, 3̄n) 
 The potential V = Σn ε3 ε2 Yn Yn Σn+1 Yn+1  has automatic symm. Xn+1 = 2 Xn   (XΣ =0)
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 The vacuum is defined by  <Iδ> = 0 and <Iε> ≠ 0      X(Iε) = 2XY + XZ = 0 

• Let us now compute the anomaly   APQ = ΣqL XL  -  ΣqR XR 
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 Thus  <Iε>  breaks  U(1)Y x U(1)Z  ->  U(1)ε    which is non-anomalous !   
 Then U(1)ε   is not a PQ symmetry, and its (exactly massless) NGB does  
 not solve the strong CP problem.
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• Recall <Y> ~ (y1,y2,0)T. To ensure a mass for tR, we need to choose    
   <Z> ~ (0,0,z3)T   that is  <Y> and <Z>  must be ”misaligned”.  
 The vacuum is defined by  <Iδ> = 0 and <Iε> ≠ 0      X(Iε) = 2XY + XZ = 0 

• Let us now compute the anomaly   APQ = ΣqL XL  -  ΣqR XR 

  3 XQ - 2 Xq - Xt   = 2(XQ - Xq) + (XQ - Xt)  = 2XY + XZ  =  X(Iε) = 0 

 Thus  <Iε>  breaks  U(1)Y x U(1)Z  ->  U(1)ε    which is non-anomalous !   
 Then U(1)ε   is not a PQ symmetry, and its (exactly massless) NGB does  
 not solve the strong CP problem.

Is this just an unlucky accident  occurring  with the   
flavour SU(3)L x SU(2)R gauge symmetry ?
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Consider a gauge symmetry GF =[Πℓ SU(mℓ)]L x [Πr SU(nr)]R acting on a certain 
set of scalar multiplets in bi-fundamentals Yℓr∈ SU(mℓ) x SU(nr) of the mℓ, nr 

gauge factors, and on N=Σℓ λℓ mℓ=Σr λr nr LH and RH quarks also in fundamentals 
(λℓ,r: isospin multiplicity). We can write a certain number of gauge invariant quark-
scalar couplings: Σ ηℓrQ̄ℓ Yℓrqr   (ηℓr: O(1) constants; ℓr ǹames’ not indices; H/Λ when needed) 
   

Assuming that all the quarks acquire masses (det Mq ≠ 0), it can be shown that:  
  

1. for any global U(1) there exists at least one scalar operator O(Y) with a  
  non-vanishing VEV and charge equal to the U(1)-SU(3)c anomaly: XO(Y) = AC ≠ 0 
     

2. modulo the coupling constants ηℓr we have:  <XO(Y)>  ≃  Λ4-N  det 𝜰qeff
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set of scalar multiplets in bi-fundamentals Yℓr∈ SU(mℓ) x SU(nr) of the mℓ, nr 

gauge factors, and on N=Σℓ λℓ mℓ=Σr λr nr LH and RH quarks also in fundamentals 
(λℓ,r: isospin multiplicity). We can write a certain number of gauge invariant quark-
scalar couplings: Σ ηℓrQ̄ℓ Yℓrqr   (ηℓr: O(1) constants; ℓr ǹames’ not indices; H/Λ when needed) 
   

Assuming that all the quarks acquire masses (det Mq ≠ 0), it can be shown that:  
  

1. for any global U(1) there exists at least one scalar operator O(Y) with a  
  non-vanishing VEV and charge equal to the U(1)-SU(3)c anomaly: XO(Y) = AC ≠ 0 
     

2. modulo the coupling constants ηℓr we have:  <XO(Y)>  ≃  Λ4-N  det 𝜰qeff

1. implies that any anomalous U(1) suffers explicit breaking at least at d = N. 
  This provides an upper limit on the quality of GF-protected PQ symmetries.  
   

2. implies that this source of breaking is removed as det 𝜰qeff
 -> 0. Providing 

    an unexpected connection between PQ quality and Yukawa hierarchies ! 


