VBF DM searches within Simplified Models

José Ruiz, Daniel Ocampo, Santiago Duque MOCa workshop - June 9, 2021

Dark matter

One of the main problems in contemporary physics

- Populates the universe (~25% universe's matter).
- Crucial for structure formation.
- Mainly cold.
- Very "invisible".

Dark Matter detection

LHC provides pp collisions

Experiments record the products of LHC collisions

Non-interacting particles cause momentum imbalance in the transverse plane of the beam

pT,miss → "Missing energy"

Many searches, many signatures

Vector Boson Fusion @ LHC

Higgs production

Phys.Lett.B 793 (2019) 520-551

Phys.Lett.B 793 (2019) 520-551

JHEP 08 (2019) 150

- Compressed mass spectra -> very likely to lose one or two leptons.
- Selection:
 - Leptons veto.
 - o min($|\Delta \phi(MET, j)|$)>0.5
 - MET>250 GeV
 - VBF selections:
 - pT(j) > 60 GeV
 - |∆η(j,j)|>3.8
 - $= \eta(j_1)\eta(j_2)<0$
 - m_{ii} > 1 TeV

JHEP 08 (2019) 150

Process	μjj	ejj	$ au_{h}$ jj	0ℓjj
DY+jets	0.20 ± 0.07	0.10 ± 0.04	0.10 ± 0.04	3714 ± 760
W+jets	13 ± 3	6 ± 1	7 ± 2	2999 ± 620
VV	1.7 ± 0.7	1.5 ± 0.6	0.9 ± 0.9	77 ± 18
t t	13 ± 4	11 ± 4	5 ± 3	577 ± 128
Single top quark	2.2 ± 0.9	0.2 ± 0.1	0.6 ± 0.3	104 ± 10
QCD	$0^{+0.2}_{-0}$	$0_{-0}^{+1.2}$	23 ± 5	546 ± 69
Total BG	31 ± 5	19 ± 5	37 ± 6	8017 ± 992
Data	36	29	38	8408

JHEP 08 (2019) 150

Phys.Rev.D 97 (2018) 5, 055045

	Efficiency per cut		
Process	Signal	Z+jets	
Initial number of MC events	2447	30996944	
Cut 1	$(23.38 \pm 0.86)\%$	$(0.22 \pm 8 \times 10^{-4})\%$	
Cut 4	$(63.11 \pm 2.02)\%$	$(51.95 \pm 0.19)\%$	
Cut 6	$(10.80 \pm 1.63)\%$	$(1.82 \pm 0.07)\%$	
Cut 7	$(84.62 \pm 5.78)\%$	$(82.57 \pm 1.48)\%$	

Cut 1	: $p_T^{\text{miss}} > 180 \text{ GeV}$
Cut 2	$:N(j)\geq 2$
Cut 3	: $p_T(j_1) > 100 \text{ GeV}$
Cut 4	: $p_T(j_2) > 50 \text{ GeV}$
Cut 5	$: \eta(j_1) \times \eta(j_2) < 0$
Cut 6	: $ \Delta \eta(j_1, j_2) > 4.2$
Cut 7	: $M(j_1, j_2) > 1 \text{ TeV}$

Simplified models - Phys.Dark Univ. 9-10 (2015) 8-23

VBF topology in Simplified Models

Selection criteria

- N(j) > 1
- $\bullet \quad \eta(j_1)\eta(j_2) < 0$
- pT(j) > 30 GeV
- HT > 200 GeV
- $|\Delta \varphi(j_1, j_2)| > 2.3$
- $min(|\Delta \phi(MET, j)|) > 0.5$
- m_{jj} > 1 TeV
 - o" Low Mediator Mass:
 - $\blacksquare |\Delta \eta(j,j)| > 3$
 - High Mediator Mass:
 - | Δη(j,j)| < 3</p>

- Two channels:
 Usual VBF selections are biased by Higgs
 mediator mass. Higher masses produce less
 separated jets in the pseudorapidity.
- 2. Specially low MET events, therefore we can't rely on this variable for the selection.
- 3. Selection optimized towards Z+jets background:
 - a. W+jets has shown very similar behavior from other studies and analyses.
 - b. QCD background controlled by min($|\Delta \phi(MET, j)|$) selection.
- Main experimental challenge would be to estimate QCD contribution.

Conclusions

- 1. $|\Delta \eta(j,j)|$ cut is optimized for different mediator masses.
- 2. Competitive and complementary results with monojet searches (in progress).
- 3. VBF topology is a promising window for searching for DM at the LHC.
- Simplified models provide a generic framework for DM searches at the LHC also for VBF searches.

Perspectives

- 1. Completing studies with other backgrounds and more signal points.
- 2. Parameter coverage compared with other searches.

Thanks!!!