Constraints on DM interactions using WDs

Maura E. Ramirez-Quezada

With Nicole Bell, Sandra Robles, Giorgio Busoni and Michael Virgato

arXiv:2104.14367

Outline

- Introduction
 - Dark matter capture
- Capture in WDs
 - Capture by scattering on ions
 - Finite temperature effects and DM evaporation
- Results
- Summary

MOca: 2021 - June 2021 - M.E. Ramirez-Quezada

DM direct detection searches

Limitations

- Background is still a challenging
- sensitivity is limited by their threshold energy and target mass
- Non-relativistic regime of DM interactions

XENON collaboration (PRL) 2018

An alternative approach

Capture in compact objects

DM can accumulate in the core of these objects in considerable amounts

Complementary to direct detection experiments.

- Velocity (momentum) dependent interactions.
- Sub-Gev regime

Annihilation

An alternative approach

DM scatters off stellar material

- If loses enough energy it becomes gravitationally bound to the star
- Accumulates and annihilates in the centre of the star.

White Dwarfs

Here we are using M4 WDs

$$\rho_{\chi} = 798 \, \mathrm{GeV/cm^3}$$

arXiv:1001.2737

We assume a **Maxwell Boltzmann** (MB) distribution,

$$f_{MB}(u_{\chi})$$

DM capture rate due to scattering on ions: assuming WDs are made of only one

element: Carbon

Inner structure

DM interactions

We calculate bounds on the cutoff scale of the dimension 6 EFT SI operators that describe DM interactions with WD targets: Including the response function of carbon

cut off scale
$$\to \Lambda_q$$

- We decompose the EFT operators in the basis of non-relativistic operators (NR)
- We then use these coefficients, and the nuclear response functions to obtain the DM-ion scattering amplitude

$$\overline{|\mathcal{M}_T|}^2 = \frac{m_T^2}{m_N^2} \sum_{N,N',i,j} C_i^N C_j^{N'} F_{ij}^{NN'}(q_{tr}^2)$$

DM interactions

We calculate bounds on the cutoff scale of the dimension 6 EFT SI operators that describe DM interactions with WD targets: Including the response function of carbon

Name	Operator	Coupling	$M_N^{ m NR}$
D1	$ar{\chi}\chi~ar{N}N$	ic_N^S/Λ_q^2	$4rac{ic_N^S}{\Lambda_q^2}m_\chi m_N \mathcal{O}_1^{ m NR}$
D2	$ar{\chi}\gamma^5\chi\;ar{N}N$	ic_N^S/Λ_q^2	$-4rac{ic_N^S}{\Lambda^2}m_N\mathcal{O}_{11}^{ ext{NR}}$
D5	$\bar{\chi}\gamma_{\mu}\chi\; \bar{N}\gamma^{\mu}N$	c_N^V/Λ_q^2	$4rac{c_N^V}{\Lambda_q^2}m_\chi m_N \mathcal{O}_1^{ m NR}$
D6	$\bar{\chi}\gamma_{\mu}\gamma^{5}\chi\ \bar{N}\gamma^{\mu}N$	c_N^V/Λ_q^2	$8rac{c_N^V}{\Lambda_q^2}(m_\chi m_N \mathcal{O}_8^{ m NR} + m_\chi \mathcal{O}_9^{ m NR})$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\;\bar{N}\sigma^{\mu\nu}N$	ic_N^T/Λ_q^2	$8 \frac{ic_N^T}{\Lambda_q^2} (m_\chi \mathcal{O}_{11}^{NR} - m_N \mathcal{O}_{10}^{NR} - 4m_\chi m_N \mathcal{O}_{12}^{NR})$

Capture rate

 Assuming that the WD is optically thin to DM scattering, the capture rate is given by

$$C_{opt,thin} = \frac{\rho_{\chi}}{m_{\chi}} \int_{0}^{R_{\star}} 4\pi r^{2} \int_{0}^{\infty} du_{\chi} \frac{f_{MB}(u_{\chi})}{u_{\chi}} w(r) \Omega^{-}(w)$$

 An absolute upper limit on the capture rate arises when we assume the maximum capture probability: Geometric limit

$$C_{geom} \propto \frac{1}{m_{\chi}}$$

 We introduce the Star Opacity by including the optical factor in the capture rate computation

$$\eta(\tau_{\chi}) = e^{\tau_{\chi}}$$

Capture rate

Geometric limit:

$$\Omega^-(w) \to 1$$

Optically thin limit:

$$\eta(\tau_{\chi}) \to 1$$

Nicole Bell, Giorgio Busoni, MERQ, Sandra Robles, Michael Virgato

Other considerations: Finite temperature

For WDs in M4 finite temperature effects are expected to be important when

$$v_T > v_d$$

Nicole Bell, Giorgio Busoni, MERQ, Sandra Robles, Michael Virgato

Other considerations: Evaporation

Accreted DM accumulated in the WD core could also escape from the star: this is the so called evaporation

Final DM velocity greater than the local escape velocity

ullet we can estimate the evaporation mass m_{evap} as the DM mass for which

$$E(m_{\chi})t_{\star} \sim 1$$

Other considerations: Evaporation

 $m_{evap} \sim 70 {\rm keV}$

Nicole Bell, Giorgio Busoni, MERQ, Sandra Robles, Michael Virgato

Nicole Bell, Giorgio Busoni, MERQ, Sandra Robles, Michael Virgato

MOca: 2021 - June 2021 - M.E. Ramirez-Quezada

Summary

- We have discussed DM capture in compact objects as complementary to DD experiments.
- We have introduce M4 WDs to set constraints on DM interactions
- We have discussed the SI dimension 6 EFT operators.
- The capture rate in

- Optically thin limit
- Geometric limit
- Complete treatment (Star opacity)

Summary

• Discussed some other considerations in this calculation:

- Temperature effects
- Dark matter evaporation

 Limits on the cut-off scale: WDs improve constraints in the Sub-GeV mass region

Thank you