Neutrinos as a probe for new physics

Diego Aristizabal UTFSM

Partially based on: arXiv:2008.05080, JHEP 12 (2020) 178

R. Branada, O. Miranda, G. Sanchez

Introduction/motivation

- Neutrinos as a probe
- CE_vNS
- COHERENT
- Vector interactions: Light versus heavy
- CEvNS environments

The case of neutrino magnetic moments

Introduction/motivation

Neutrinos as a probe

Depending on the production mechanism $E_{\nu} \sim 10^{-2} - 10^{18} \, {\rm eV}$ and

 $\sigma_{v} \sim 10^{-58} - 10^{-28} \,\mathrm{cm}^2$... Hard to think of any other particle with such characteristics

Introduction/motivation

Neutrinos as a probe

- CEvNS
- COHERENT
- Vector interactions: Light versus heavy
- CEvNS environments

The case of neutrino magnetic moments

CE_VNS

 $CE_{\nu}NS$ occurs when the neutrino energy E_{ν} is such that nucleon amplitudes sum up coherently \Rightarrow cross section enhancement

Introduction/motivation

• Neutrinos as a probe

● CE_vNS

COHERENT

 Vector interactions: Light versus heavy

• CEvNS environments

The case of neutrino magnetic moments

COHERENT

CEvNS observed by COHERENT more than 40 years after its prediction

Akimov et. al. 2017

Introduction/motivation

Neutrinos as a probe

• CEvNS

● COHERENT

Vector interactions: Light versus heavy

• CEvNS environments

The case of neutrino magnetic moments

COHERENT uses neutrinos produced at the SNS

@ Oak Ridge National Laboratory in the collision p - Hg

$$\begin{aligned} \pi^+ &\to \mu^+ + \nu_\mu \\ \mu^+ &\to e^+ + \nu_e + \bar{\nu}_\mu \end{aligned}$$

Presence of CE_vNS favored @ the 6.7 σ level. Data consistent with SM @ the 1 σ

$$n_{\rm PE} = 1.17 \, (E_R / {\rm keV})$$

Recently measured in LAr (CENNS-10) 2003.10630

Vector interactions: Light versus heavy

Introduction/motivation

- Neutrinos as a probe
- CE_vNS
- COHERENT
- Vector interactions: Light versus heavy
- CEvNS environments

The case of neutrino magnetic moments

Each scenario comes along with distinctive features

signal degeneracies are expected!

CEvNS environments

Introduction/motivation

The case of neutrino magnetic moments

- Neutrino EM current
- Constraints I
- Constraints II
- Contributions to CEvNS and v e ES
- Expectations at a 1-ton detector (XENON1T)
- Sensitivities: procedure
- Nuclear recoils
- Electron recoils
- Résumé

The case of neutrino magnetic moments

Neutrino EM current

Parametrization and model-independent results derived by Kayser PRD 26, 1982 (1662) and Nieves PRD, 26, 1982 (3152)

$$\langle v_i | j_\mu | v_j \rangle = f_Q(q^2)_{ij} \gamma_\mu + f_A(q^2)_{ij} (q^2 \gamma_\mu - q_\mu q) + i \sigma_{\mu\nu} q^\nu [f_M(q^2)_{ij} - i f_E(q^2)_{ij} \gamma_5]$$

⇒ Diagonal EM FFs
$$(q^2 \rightarrow 0)$$
:
⇒ Diagonal EM FFs:
⇒ Diagonal EM FFs:
 $f_E(q^2)_{ii} = 0 \text{ (CP conserved)}$
 $f_A \rightarrow a_v$
 $f_E \rightarrow \epsilon_v$
 $f_E(q^2)_{ii} = 0 \text{ (CP conserved)}$
Dirac v
 $f_A(q^2)_{ii} \neq 0$
Majorana v
→ Transitions

Introduction/motivation

The case of neutrino magnetic moments

Neutrino EM current

- Constraints I
- Constraints II
- Contributions to CEvNS and v e ES
- Expectations at a 1-ton detector (XENON1T)
- Sensitivities: procedure
- Nuclear recoils
- Electron recoils
- Résumé

Constraints I

These couplings contribute to a variety of processes

The most widely considered: μ_{ν}

Astrophysical bounds

These bounds should be understood as order of magnitude estimations

Diego Aristizabal, UTFSM, June 8, 2021

Introduction/motivation

Neutrino EM current

• Expectations at a 1-ton

detector (XENON1T) Sensitivities: procedure

moments

 Constraints I Constraints II

v - e ES

Nuclear recoils

Electron recoils

Résumé

The case of neutrino magnetic

Constraints II

Laboratory limits

Introduction/motivation

The case of neutrino magnetic moments

Neutrino EM current

Constraints I

Constraints II

- Contributions to CEvNS and v e ES
- Expectations at a 1-ton detector (XENON1T)
- Sensitivities: procedure
- Nuclear recoils
- Electron recoils
- Résumé

v - e scattering using solar and reactor neutrino fluxes

 μ_{v} contribution to CEvNS (NR) event rates

Vogel & Engel, PRD, 39 (1989)

Introduction/motivation

- The case of neutrino magnetic
- moments
- Neutrino EM current
- Constraints I
- Constraints II
- Contributions to CEvNS and v e ES
- Expectations at a 1-ton detector (XENON1T)
- Sensitivities: procedure
- Nuclear recoils
- Electron recoils
- Résumé

$$\frac{d\sigma_{\nu-N}}{dE_r} = \pi \alpha Z^2 \frac{\mu_{\text{eff}}^2}{m_e^2} \left(\frac{E_{\nu} - E_r}{E_{\nu} E_r}\right) F^2(E_r)$$

Spectral distortions, particularly relevant

at low recoil energies

 μ_{ν} contribution to $\nu - e$ (ER) event rates

Vogel & Engel, PRD, 39 (1989)

 $\frac{d\sigma_{\nu-e}}{dE_r} = \pi \alpha \frac{\mu_{\text{eff}}^2}{m_e^2} \left(\frac{E_{\nu}-E_r}{E_{\nu}E_r}\right)$

Same spectral features

A detector sensitive to both allows an

interplay between ER and NR measurements

Expectations at a 1-ton detector (XENON1T)

Sensitivities: procedure

Introduction/motivation

- The case of neutrino magnetic moments
- Neutrino EM current
- Constraints I
- Constraints II
- Contributions to CEvNS and v e ES
- Expectations at a 1-ton detector (XENON1T)
- Sensitivities: procedure
- Nuclear recoils
- Electron recoils
- Résumé

For CEvNS assume two background hypotheses + two thresholds

25% and 68% of the signal rate & 1 keV and 0.3 keV

For v - e scattering use predicted background

material radioactivity, $\beta\beta$ of ¹³⁶Xe...

XENONnT, 2007.08796

DARWIN, 2006.03114 ¹³⁶Xe Event Rate [count/tonne/year/keV] 10^3 10^2 10^1 10^1 10^0 10^{-1} 10^{-1} 10^{-3} 10^{-3} Materials pep 124 Vo Radon v capture Krypton 800 200 400 600 1000 1200 1400 0 Energy [keV]

Nuclear recoils

- Neutrino EM current
- Constraints I
- Constraints II
- Contributions to CEvNS and v e ES
- Expectations at a 1-ton detector (XENON1T)
- Sensitivities: procedure
- Nuclear recoils
- Electron recoils
- Résumé

Electron recoils

10

8

1 tonne

10 tonne

40 tonne

The case of neutrino magnetic moments

Neutrino EM current

Constraints I

Constraints II

• Contributions to CEvNS and v - e ES

 Expectations at a 1-ton detector (XENON1T)

Sensitivities: procedure

Nuclear recoils

Electron recoilsRésumé

6 $\Delta \chi^2$ 95%CL 4 90%CL 2 *v*-е 0 5 10 15 20 25 30 0 $\mu_{v} [10^{-12} \mu_{B}]$

Sensitivities enter the region not constrained by astrophysical

arguments... Region where some TeV-related new physics predicts $\mu_{\nu} \neq 0$

Résumé

Introduction/motivation

The case of neutrino magnetic moments

- Neutrino EM current
- Constraints I
- Constraints II
- Contributions to CEvNS and v e ES
- Expectations at a 1-ton detector (XENON1T)
- Sensitivities: procedure
- Nuclear recoils
- Electron recoils
- Résumé

CEvNS experiments provide an ideal environment where to look for new interactions

Neutrino electromagneitc properties, in particular NMM, can produce sizable signatures

Direct detection experiments will (are) lead NMM signal searches

Even in the NR channel, sensitivities will be as competitive as those from ER in Borexino

In the ER channel, sensitivities will explore regions not ruled out by astrophysical arguments

Test of TeV models predictions in that region is possible