
ProShell Procedure Framework Status
MedAustron Control System Week 2

October 7th, 2010
Roland Moser

PR-101007-a-RMO, October 7th, 2010 Roland Moser
1

R. Gutleber



Overview

• Scope

• Concept

• Architecture

• Status

PR-101007-a-RMO, October 7th, 2010 R. Moser
2



Scope

• Presents an overview of the planned architecture of the 
ProShell Procedure Framework

• Shows the current status and plan till December

PR-101007-a-RMO, October 7th, 2010 R. Moser
3



PR-101007-a-RMO, October 7th, 2010 R. Moser
4

CONCEPTS



General Terms

• ProShell Procedure Framework
• Windows C# Application managing procedures

• Procedure
• a module that performs a task

• E.g. Emittance measurement, Procedure to change mode to clinical, 
Quality assurance procedures, etc.

• Resource
• Device, Working Set, Virtual Accelerator

• Driver
• Provides a high-level interface to a component

• E.g. PVSS

PR-101007-a-RMO, October 7th, 2010 R. Moser
5



ProShell Procedure Framework

• proides a graphical user interface that

• dynamically loads Procedures,

• manages Procedures,

• provides APIs to interact with control system components
• Allocate resources through VAA

• Communicate with resources

PR-101007-a-RMO, October 7th, 2010 R. Moser
6



PR-101007-a-RMO, October 7th, 2010 R. Moser
7

ARCHITECTURE



Overview

PR-101007-a-RMO, October 7th, 2010 R. Moser
8

Device
Device

VAA

PVSS

MTS

R

R
ProShell

Procedure

Framework

Component
R

R



Architecture

PR-101007-a-RMO, October 7th, 2010 R. Moser
9

ProShell

ProcedureContext

VAA

PVSS

Driver

VAA

Driver

R

Procedure

R

PVSS

Resources

MTS

Driver
MTS



Screenshot

PR-101007-a-RMO, October 7th, 2010 R. Moser
10



Screenshot

PR-101007-a-RMO, October 7th, 2010 R. Moser
11

Main Panel Input Panel

Log Panel

Menu Bar

Status Bar



Procedure

• implements a well-defined API to perform a task
• Example: „Emittance measurement“

• operates on resources (devices, WS, VAccs)

• inherits from BaseProcedure that provides default 
implementations for each function
• Loading configuration parameters

• Generating the graphical user interface and handling on changes

• Allocating of VAccs and Working Sets

• may override default implementations to customize functions

• Handling of user events (button pressed)

PR-101007-a-RMO, October 7th, 2010 R. Moser
12



ProcedureContext

• Manages a minimal set of data required by every procedure
• User Interface Elements

• Reading Configuration

• Provide logging capabilities

• A coloured PetriNet used for executing a procedure

PR-101007-a-RMO, October 7th, 2010 R. Moser
13

 pkg Procedures

«class»

AD-EA-0010 (BaseProcedure)

«class»

AD-EA-0011 

(ProcedureRegistry)

«class»

AD-EA-0012 

(ProcedureContext)

«class»

AD-EA-0014 

(SharedObjectLoader)

«interface»

AD-EA-0005 

(IProcedure)

External::

AD-EA-0910 

(PetriNet)

Load and unload shared objectsimplements

creates



Resources

Procedures operate on the following types of resources

• Virtual Accelerators
• List of working sets

• Working Sets
• List of state machine devices

• State Machine Devices
• May contain a list of base devices

• E.g. Vacuum Control System for a sector

• Base Devices
• E.g. Vacuum Valve

PR-101007-a-RMO, October 7th, 2010 R. Moser
14



 pkg Dev ices

«class»

AD-EA-0030 

(BaseDev ice)

«class»

AD-EA-0040 

(StateMachineDev ice)

«class»

AD-EA-0060 

(VAADev ice)

«class»

AD-EA-0050 

(PCCDev ice)

«class»

AD-EA-0070 

(WorkingSet)

+ allocate()

«class»

AD-EA-0080 

(Dev iceFactory)

«class»

AD-EA-0075 

(VirtualAccelerator)

«interface»

AD-EA-0020 

(IBaseDev ice)

«interface»

AD-EA-0025 

(IStateMachineDev ice)

«interface»

Driv ers::

AD-EA-0110 

(IPVSSDriv er)

«interface»

Driv ers::

AD-EA-0120 

(IVAADriv er)

«class»

VacuumValv e

extendsextends

implements

Access VAA over network

Access VAA over network

implements

Access PVSS

Access PVSS

Access PVSS

Resource Class Hierarchy

PR-101007-a-RMO, October 7th, 2010 R. Moser
15



Devices

• Base devices provide an API to
• Read default properties (e.g. Name)

• State machine devices provide an API to
• control the state machine

• change the mode

• etc.

• Additional device types can be added with a custom interface 
that extends one of the previous APIs
• API simplifies the source code in the procedures by not using PVSS 

dpGet/dpSet directly

• Power converter: ground(), unground() functions

• Beam stopper: moveIn() and MoveOut() functions

PR-101007-a-RMO, October 7th, 2010 R. Moser
16



Drivers

• Encapsulate communication
• E.g. PVSS, MTS, VAA, ...

• Two types of drivers
• Real drivers communicate to 

the real system

• Dummy drivers emulate the 
functionality (for testing 
without real system)

PR-101007-a-RMO, October 7th, 2010 R. Moser
17

 pkg Driv ers

«class»

AD-EA-0130 

(PVSSDriv er)

«class»

AD-EA-0140 

(VAADriv er)

«class»

AD-EA-0150 

(PVSSDummyDriv er)

«class»

AD-EA-0160 

(VAADummyDriv er)

«class»

AD-EA-0170 

(Driv erRegistry)

External::

AD-EA-0900 

(PVSSProxy)

«interface»

AD-EA-0100 

(IDriv er)

«interface»

AD-EA-0110 

(IPVSSDriv er)

«interface»

AD-EA-0120 

(IVAADriv er)

stores



Petri-Nets

• A Petri net is a mathematical model language to describe a 
distributed system. It is a graph where nodes are either
• Transitions represent events that may occur

• Places represent conditions to fire transitions

• Allows parallel execution

PR-101007-a-RMO, October 7th, 2010 R. Moser
18

PlaceTransitionToken



Coloured Petri-Nets

• Procedures use Coloured-Petri Nets where
• Tokens may carry additional information (coloured)

• Callbacks are attached to transitions and are executed synchronously

• Places can be filled on user action (pressing a button) or 
programmatically (e.g. Asynchronous measurement finished)

• Petri nets can be executed step-by-step (e.g. Debugging) or started 
where the net runs until its terminal condition is satisfied

• Parameterization of the petri net

PR-101007-a-RMO, October 7th, 2010 R. Moser
19



Example: Emittance Measurement

PR-101007-a-RMO, October 7th, 2010 R. Moser
20



PR-101007-a-RMO, October 7th, 2010 R. Moser
21

STATUS



Current Status

• First draft of ProShell Enterprise Architect Model contains
• Initial Requirements gathering

• Initial Architecture and Design document

• Current implementation of ProShell contains
• A first draft of the procedure interface including

• Loading of configurations

• Automatic creation input panel based on configuration

• Handling multiple procedures concurrently

• Initial Petri Net support (programmatic creation and execution)

• Driver interface provided with dummy drivers

• Resource hierarchy available for the generic devices

• Custom device interfaces to be provided on demand

PR-101007-a-RMO, October 7th, 2010 R. Moser
22



Plan till December 2010

• Working on the Enterprise Architect Model
• requirements

• architecture and design

• Provide an initial ProShell skeleton
• Procedure interface finalized

• Eventually provide integration with PVSS

• Dynamic loading of procedures (Cosylab)

• Editor for Coloured PetriNets (Cosylab)

PR-101007-a-RMO, October 7th, 2010 R. Moser
23



Summary

• Ahead of Time
• None

• In-Time
• ProShell implementation

• Behind schedule
• ProShell requirements

• ProShell architecture and design

PR-101007-a-RMO, October 7th, 2010 R. Moser
24



Additional Information

• can be found on SVN
• ES-100722-a-RMO ProShell Enterprise Architect Model

• Source code can be found at /trunk/SCS/ProShell

PR-101007-a-RMO, October 7th, 2010 R. Moser
25



Questions?

PR-101007-a-RMO, October 7th, 2010 R. Moser
26



PR-101007-a-RMO, October 7th, 2010 R. Moser
27

ADDITIONAL
SLIDES


