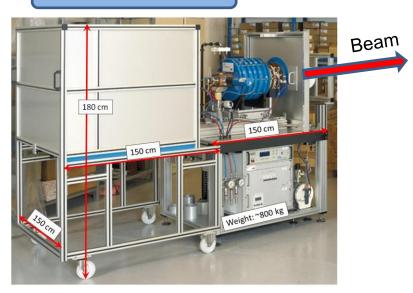

Ion Sources - Hardware and Operation

MACS Week 2010 - 2 Friday 8th October 2010

Overview of an ion source

The Ion Source system


IS racks (cabinet)

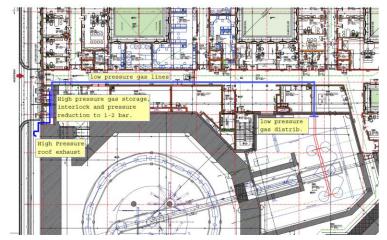
Example: Supernanogan source (CNAO, HIT)

- ➤ Power supplies (for the source potential, puller and focus potentials);
- > HV platform, with insulation transformer and fiber optic converters;
- ➤ Control and monitoring equipment: vacuum gauge controller, command and control of the power supplies, command and control of the components of the RF system (generator, amplifier, tuner).
- The interlocking chain.

Ion Source Bench

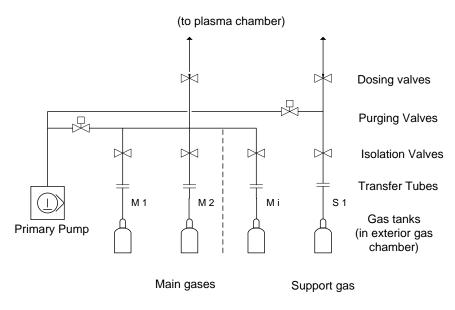
- The extraction system;
- The pumping tank;
- ➤ The source itself;
- ➤ The RF system (power supply unit, signal generator and RF amplifier);
- > The gas injection circuit;
- > The water cooling circuit

Gas injection system - overview


List of **employed gases** for the generation of different **ion beams**

Beam	Injected gas							
	CO ₂	He	H ₂	CH ₄	N ₂	02	Ne	
C ⁴⁺	х	х		х				
H ₃ ¹⁺			х					
He ¹⁺		х						
N ⁵⁺		х			х			
O ⁶⁺		х				х		
Ne ⁷⁺		х					х	

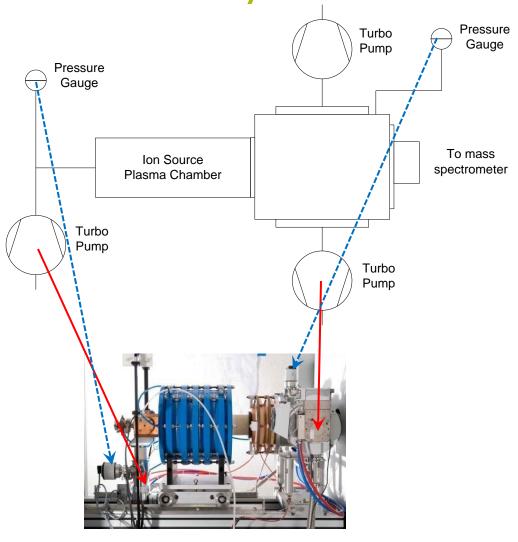
Two approaches for the global layout:



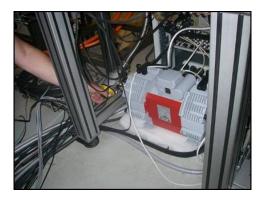
Example: Supernanogan at CNAO (all gas system components included on each IS bench)

MedAustron: Global gas distribution (included in the building infrastructure)

Gas injection system - hardware

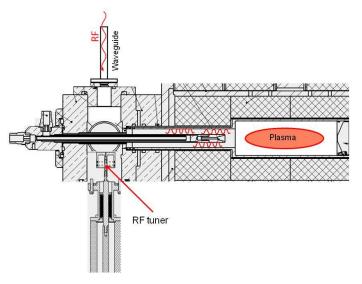


- ➤ High pressure bottles (up to 200 bars)
- ➤ High pressure to low pressure regulators (at 1-2 bars)
- Low flux electrically controlled dosing valves at CNAO; mass flow controllers at MedAustron
- Isolating gate for each gas
- > Purging system with primary vacuum control
- > Remote control of the panel (except for bottle replacement and low pressure regulators)


System compatible with both possible solutions:

- ➤ Global (and fixed) gas distribution included in the building infrastructure
- ➤ Distributed (and local) gas distribution all comprised on the IS bench

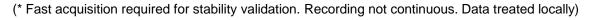
Vacuum system



The control of the vacuum components is covered by the global vacuum control system.

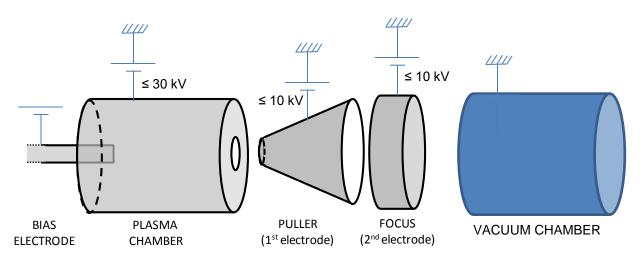
Primary pump (1x)

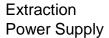
Plasma generation


Enet controller


Signal generator -

RF amplifier •

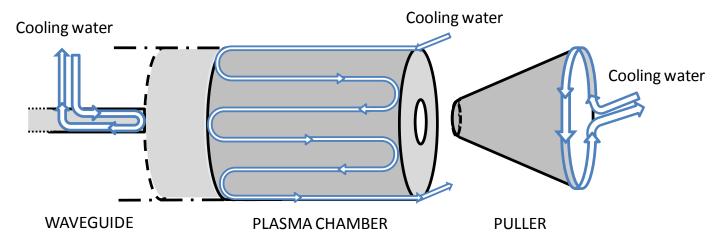

Power supply unit


DEVICE	PARAMETERS	RANGE	ACTIONS	ACQUISITION rate	Alarm
Signal generator	State	On/off	Read, write	On change	No
	Frequency	1-22 G Hz	Read, Write	1 Hz	No
Amplifier	State	On/off	Read, write	On change	No
	Frequency	13.75-14.5	Read, Write	10 kHz*	No
		GHz			
	power	0-500 W	write	-	-
	Fwd. power	0-500 W	Read	10 kHz*	No
	Refl. power	0-500 W	Read	10 kHz*	yes
Tuner	State	On/off	Read, write	On change	No
	position	TBD mm	Read, write	On change	No

IS Extraction system

Puller Power Supply

Focus (Einzel) Power Supply


(installed in the racks close to the source)

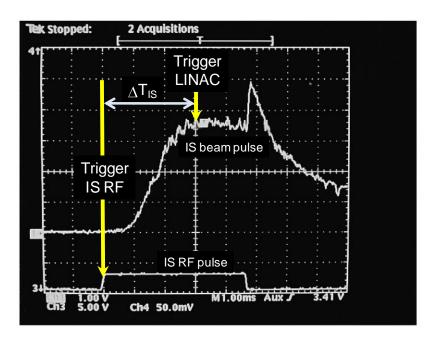
Controlled parameters (all PS)

PARAMETERS	RANGE	ACTIONS	ACQUISITION rate	Alarm
State	On/off	Read, write	On change	No
Potential	0-30 kV	Read, write	1 Hz	No
Current	0-30 mA	Read	10 kHz*	Yes

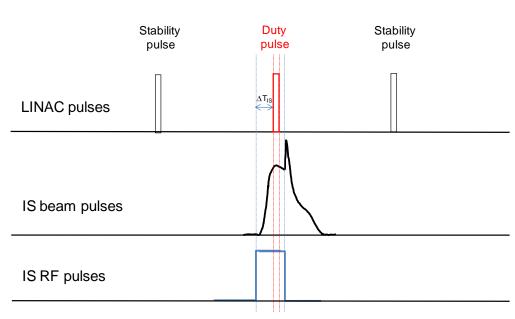
^{(*} Fast acquisition required for stability validation. Recording not continuous. Data treated locally)

Water cooling system

To cool down:

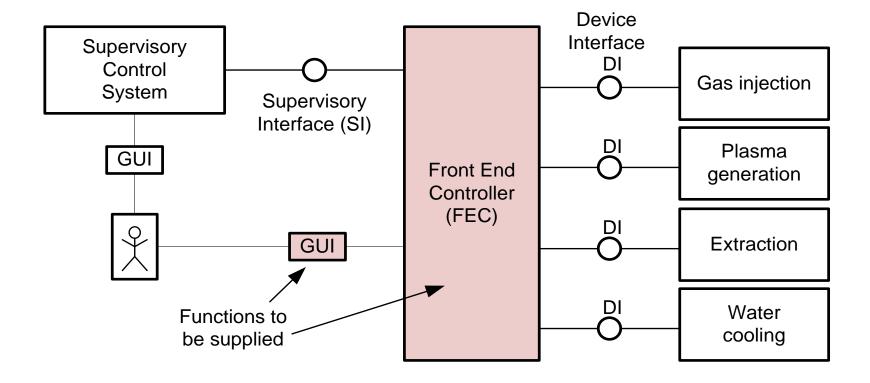

- Plasma chamber
- DC bias
- RF injection
- Extraction system
- Extraction turbo-molecular pumps

Controlled equipment



- 1 Chiller
 - > Water temp.
 - > Water flow

Pulsed operation



Beam pulse of C4+ from the ECR ion source (top, 100 $e_{\mu}A/div$) and the pulsed microwave power (bottom, 900 W/div) (example from HIMAC)

Required synchronization between the RF pulses of the ion source and the LINAC pulses.

Interfaces

Status

- \succ First version of the specification document for the IS control system \rightarrow done.
- ➤ Discussions with the IS Bidders to define and assign the work packages for the control system → next ~2 weeks.
- ➤ Ion Sources contract to be placed by the end of the month (T0)
- Full hardware documentation available in T0 + 2 months.