EIC Silicon Consortium

Laura Gonella on behalf of the EIC Silicon Consortium

ECCE Workshop

11 February 2021

EIC Silicon Consortium

- Building on from the work carried out by the eRD16 (LBNL) and eRD18(Birmingham/RAL) projects, now merged into eRD25, within the EIC Generic Detector R&D meeting since 2016
- EOI: https://indico.bnl.gov/event/8552/contributions/43219/

... and more institutes expressing interest/joining

Develop a **well-integrated and large-acceptance** EIC vertex and tracking detector concept, based on Monolithic Active Pixel Sensor (**MAPS**) in a commercial **65 nm** CMOS imaging process

- A large effort is emerging to develop new generation MAPS in a commercial 65 nm CMOS imaging technology
- Large interest in the HEP community to develop this process for future experiments: CERN EP R&D programme and ALICE ITS3 project
- This path is very attractive for the development of an EIC MAPS
- With respect to older CMOS imagining technologies (for instance 180 nm), 65 nm offers
 - Improved performance in terms of granularity and power consumption that are key for precision measurements at the EIC
 - **Process availability** on the EIC project timescale
 - Lower cost per area but higher entry cost and complexity than older technology nodes, however...
- ... the EIC SVT development could leverage from the ALICE ITS3 project
 - The ITS3 **sensor specifications and development timescale** are largely compatible with those of the EIC
 - Non-ALICE members are welcome to contribute to the R&D to develop and use the technology for other applications
 - See L. Greiner at the EIC Yellow Report Kick-Off meeting <u>https://www.jlab.org/indico/event/348/session/5/material/0/0.pdf</u>

ALICE ITS3 project

- The ALICE ITS3 project aims at developing a new generation MAPS sensor at the 65 nm node with extremely low mass for the LHC Run4 (HL-LHC)
- ITS3 sensor
 - Specifications meet or even exceed the EIC requirements
 - Higher granularity (10 um pixel pitch) and lower power consumption (<20mW/cm²) with respect to pre-CD0 simulation baseline (that was ITS2/ALPIDE derived)
 - Also integration time, fake hit rate and time resolution better than required at the EIC

CE CE	Specifications			
Parameter	ALPIDE (existing)	Wafer-scale sensor (this proposal)		
Technology node	180 nm	65 nm		
Silicon thickness	50 μm	20-40 μm		
Pixel size	27 x 29 μm	O(10 x 10 µm)		
Chip dimensions	1.5 x 3.0 cm	scalable up to 28 x 10 cm		
Front-end pulse duration	~ 5 µs	$\sim 200 \text{ ns}$		
Time resolution	~ 1 µs	< 100 ns (option: <10ns)		
Max particle fluence	100 MHz/cm ²	100 MHz/cm^2		
Max particle readout rate	10 MHz/cm ²	100 MHz/cm ²		
Power Consumption	40 mW/cm^2	< 20 mW/cm ² (pixel matrix)		
Detection efficiency	> 99%	>99%		
Fake hit rate	< 10 ⁻⁷ event/pixel	< 10 ⁻⁷ event/pixel		
NIEL radiation tolerance	$\sim 3 \times 10^{13}$ 1 MeV n _{eq} /cm ²	10^{14} 1 MeV n _{eq} /cm ²		
TID radiation tolerance	3 MRad	10 MRad		

M. Mager | ITS3 kickoff | 04.12.2019 |

- ITS3 detector
 - Three layers vertex detector, 0.12 m²
 - Truly cylindrical layers
 - Design and post-processing techniques to reach an extremely low material budget of 0.05% X/X0 per layer
 - Low power, wafer-scale sensor, thinned to 20-40 µm, bent around the beam pipe = air-cooling, support and services outside active area

Simulation driven technology choice

Initial simulations showed

Relative momentum resolution [%]

• The need for ITS3 like spatial resolution and material budget to reach required vertex resolution

ITS3-derived EIC SVT

- Vertexing inner layers
 - Use ITS3 sensor
 - Adapt ITS3 detector concept to different length and radii of the EIC vertex layers

EIC strawman design (modification of ITS3)

Reach larger radii by using 3 bent sections. Services exit from both sides of inner layers.

- Tracking layers and disks
 - Staves and discs will be based on a forked EIC specific sensor design based on the ITS3 sensor
 - The primary concern is yield for long rows of stitched sensors. The plan is to assess yield in the first engineering run and adjust the EIC sensors to optimize yield for the number of stitched sensors in a row.
 - Staves and disks will need to optimize the stitched sensor layout on the wafers to provide the right number of stitched sensor lengths to give the proper needed lengths for each stave/disc. This needs study and optimization.

ITS3-derived EIC SVT - Material budget estimates

- See L. Greiner's talk at the 2nd YR workshop for details
 - <u>https://indico.bnl.gov/event/8231/contributions/37955/</u>

	Stave X/X0	Stave transition (per 100 cm^2 of Si surface)	Services (per 100 cm^2 of Si surface)	Patch panel (per 100 cm^2 of Si surface)
ITS3 like vertexing	~0.1%	6.66 cm^3 of material with X/X0 of 0.031 per traversed cm	2.96 cm^2 cross section with X/X0 of 0.002 per traversed cm	4.32 cm x 1cm x 1 cm with 0.03423 X/X0 per traversed cm
ITS3 like barrel (up to 1.5m length)	0.55 %	4.286 cm^3 of material with X/X0 of 0.0306 per traversed cm	1.905 cm^2 cross section with X/X0 of 0.002 per traversed cm	2.778cm x 1cm x 1 cm with 0.03423 X/X0 per traversed cm
S3 like disc (up to 60 n diameter)	0.24%	6.66 cm^3 of material with X/X0 of 0.031 per traversed cm	2.96 cm^2 cross section with X/X0 of 0.002 per traversed cm	4.321 cm x 1cm x 1 cm with 0.03423 X/X0 per traversed cm

Patch panel

YR baseline SVT concepts

- Two tracking detector scenarios developed as YR baseline concepts based on the proposed ITS3-derived EIC SVT
 - Beam pipe for both is a beryllium cylinder of radius of 3.17 cm and thickness of 760 μ m
- All-silicon concept
 - See talk from R. Cruz-Torres at this workshop

Barrel	radius	length along z
layer	[cm]	[cm]
1	3.30	30
2	5.70	30
3	21.00	54
4	22.68	60
5	39.30	105
6	43.23	114

Table 1: Main barrel-layer characteristics.

Table 2: Main disk characteristics.

Disk	z position	outer	inner	-	
umber	[cm]	radius [cm]	radius [cm]	x/X0 yertex	0.20/
-5	-121	43.23	4.41	x/x0 vertex	0.5%
-4	-97	43.23	3.70		0.20/
-3	-73	43.23	3.18	x/XU tracking layers	0.3%
-2	-49	36.26	3.18		0.204
-1	-25	18.50	3.18	X/XU disks	0.3%
1	25	18.50	3.18		
2	49	36.26	3.18	Pixel pitch [um]	10
3	73	43.23	3.50		
4	97	43.23	4.70		
5	121	43.23	5.91		

- Hybrid: Silicon + gaseous detector tracking
 - Work by H. Wennlöf, <u>https://indico.bnl.gov/event/7919/contributions/43180/</u> and in YR chapter 11

Layer	Length	Radial position	Disk	z position	Inner radius	Outer radius
Layer 1	420 mm	36.4 mm	Disk 1	220 mm	36.4 mm	71.3 mm
Layer 2	420 mm	44.5 mm	Disk 2	430 mm	36.4 mm	139.4 mm
Layer 3	420 mm	52.6 mm	Disk 3	586 mm	36.4 mm	190.0 mm
Layer 4	840 mm	133.8 mm	Disk 4	742 mm	49.9 mm	190.0 mm
Layer 5	840 mm	180.0 mm	Disk 5	898 mm	66.7 mm	190.0 mm
TPC start	2110 mm	200.0 mm	Disk 6	1054 mm	83.5 mm	190.0 mm
TPC end	2110 mm	780.0 mm	Disk 7	1210 mm	99.3 mm	190.0 mm
	(a) Barrel re	egion		(b) Disk region	

x/X0 vertex	0.05%
x/X0 tracking layers	0.55%
x/X0 disks	0.24%
Pixel pitch [um]	10

Laura Gonella | ECCE workshop | 11 February 2021

YR baseline SVT concepts against physics requirements

- Both concepts tested against the tracking requirements provided by the YR physics WG
 - Full results published in the YR, here only selected plots for hybrid concept

			Tracking requ	irements from PWG	is		
			Momentum res.	Material budget	Minimum pT	Transverse pointing res.	
η							
-3.5 to -3.0			$m/n \approx 0.1\% \times n \approx 0.5\%$		100-150 MeV/c		
-3.0 to -2.5]	Rockward	op/p = 0.1 % p @ 0.3 %		100-150 MeV/c	dca(xy) ~ 30/pT μm ⊕ 40 μm	
-2.5 to -2.0	1	Dackwaru			100-150 MeV/c		
-2.0 to -1.5	1	Delector	σp/p ~ 0.05%×p ⊕ 0.5%	100-150 MeV 100-150 MeV	100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm	
-1.5 to -1.0	1				100-150 MeV/c		
-1.0 to -0.5	1						
-0.5 to 0	Central	Barrel	Barrel		9/ F9/ X0 land	100-150 MeV/c	dec(ver) = 20/pT um @ F um
0 to 0.5	Detector			op/p ~ 0.05% p @ 0.5%	~5% XU or less		uca(xy) ~ 20/p1 µm @ 5 µm
0.5 to 1.0	1						
1.0 to 1.5	1				100-150 MeV/c		
1.5 to 2.0	1	Forward Detector	σp/p ~ 0.05%×p ⊕ 1%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm	
2.0 to 2.5	1		Iwaru		100-150 MeV/c		
2.5 to 3.0	1				100-150 MeV/c	dca(xy) ~ 30/pT μm ⊕ 40 μm	
3.0 to 3.5	1		op/p ~ 0.1%∧p ⊕ 2%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 60 µm	

Figure 1: Requirements Table

- Transverse pointing resolution
 - 1.5T, 3.0T, PWG requirement

Results by H. Wennlöf

YR baseline SVT concepts against physics requirements

- Both concepts tested against the tracking requirements provided by the YR physics WG
 - Full results published in the YR, here only selected plots for hybrid concept

	Tracking requirements from PWGs							
			Momentum res.	Material budget	Minimum pT	Transverse pointing res.		
η								
-3.5 to -3.0			$\sigma_{D/D} \sim 0.1\% x_{D} \approx 0.5\%$		100-150 MeV/c			
-3.0 to -2.5]	Backward	op/p 0.176+p 0 0.076		100-150 MeV/c	dca(xy) ~ 30/pT μm ⊕ 40 μm		
-2.5 to -2.0]	Detector			100-150 MeV/c			
-2.0 to -1.5]		σp/p ~ 0.05%×p ⊕ 0.5%		100-150 MeV/c	dca(xy) ~ 30/pT μm		
-1.5 to -1.0	1				100-150 MeV/c			
-1.0 to -0.5	1							
-0.5 to 0	Central	Barrol	$\sigma_{0}/\sigma \sim 0.05\% x_{0} \approx 0.5\%$		100 150 MoV//o	dca(xy) ~ 20/pT µm ⊕ 5 µm		
0 to 0.5	Detector	Barrel	op/p ~ 0.05%×p ⊕ 0.5%	~5% X0 01 less	100-150 MeV/C			
0.5 to 1.0	1							
1.0 to 1.5	1				100-150 MeV/c			
1.5 to 2.0]	Forward Detector	σp/p ~ 0.05%×p ⊕ 1%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm		
2.0 to 2.5	1				100-150 MeV/c	1		
2.5 to 3.0	1		$\sigma_{\rm D}/{\rm D} \sim 0.1\%$ xp. $\phi_{\rm C}/{\rm C}$		100-150 MeV/c	dca(xy) ~ 30/pT μm ⊕ 40 μm		
3.0 to 3.5			op/p = 0.1% p @ 2%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 60 µm		

Relative momentum resolution

1.5T, 3.0T, PWG requirement

Results by H. Wennlöf

Laura Gonella | ECCE workshop | 11 February 2021

Figure 1: Requirements Table

YR baseline SVT concepts against physics requirements

- Both concepts tested against the tracking requirements provided by the YR physics WG
 - Full results published in the YR, here only selected plots for hybrid concept

Tracking requirements from PWGs							
			Momentum res.	Material budget	Minimum pT	Transverse pointing res.	
η							
-3.5 to -3.0			$m/n \approx 0.1\% \times n \approx 0.5\%$		100-150 MeV/c		
-3.0 to -2.5	1	Rockward	op/p ~ 0.1 /8~p @ 0.3 /8		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 40 µm	
-2.5 to -2.0		Detector			100-150 MeV/c		
-2.0 to -1.5	1	Detector	σp/p ~ 0.05%×p ⊕ 0.5%	-	100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm	
-1.5 to -1.0	1				100-150 MeV/c		
-1.0 to -0.5	1						
-0.5 to 0	Central	Barrel	Barrel		EN VO en lese	400 450 14-14	dec(m) = 20/pT up a F up
0 to 0.5	Detector			Barrel	Barrei op/p ~ 0.05%×p @ 0.5%	~5% XU or less	100-150 MeV/C
0.5 to 1.0	1						
1.0 to 1.5	1				100-150 MeV/c		
1.5 to 2.0	Forward Detector	Ferward	σp/p ~ 0.05%×p ⊕ 1%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm	
2.0 to 2.5		Porwaru			100-150 MeV/c		
2.5 to 3.0		Delector	70/2 - 0 1% ×2 0 2%		100-150 MeV/c	dca(xy) ~ 30/pT μm ⊕ 40 μm	
3.0 to 3.5	1		op/p∼0.1%×p ⊕ 2%		100-150 MeV/c	dca(xy) ~ 30/pT μm ⊕ 60 μm	

Transverse relative momentum resolution

Figure 1: Requirements Table

1.5T, 3.0T, PWG requirement

Laura Gonella | ECCE workshop | 11 February 2021

EIC Silicon Consortium status

- Sensor development
 - RAL/Birmingham/LBNL already involved in first 65 nm submission with ITS3 Work Package 2
 - More groups signing NDA and collaboration agreement to join
 - Second submission now plans to start implementing stitching already

- Simple extrapolation of material budget into staves/discs based on ITS3 sensor specification exists (slide 7)
- A document on EIC tracker powering options has been produced
 - Detector/power system requirements
 - DC-DC conversion and serial powering
 - Material budget and development time
- Physics performance simulations continue
- Started EIC SC monthly meeting; assigning groups to tasks and tasks to work packages; discussions ongoing with ITS3 for EIC SC groups to join relevant work packages beyond WP2

Some more references

- Description of ITS3 R&D project and silicon survey at EICUG YR meeting at Temple
 - L. Greiner <u>https://indico.bnl.gov/event/7449/contributions/35955/</u>
 - L. Gonella <u>https://indico.bnl.gov/event/7449/contributions/35954/</u>
- eRD25
 - Proposal talk <u>https://wiki.bnl.gov/conferences/images/1/1c/ERD25-proposal-Jul20.pdf</u>
 - Full proposal and progress report <u>https://wiki.bnl.gov/conferences/images/6/6d/ERD25-Report-FY21Proposal-Jun20.pdf</u>
- Talks at EIC SVT workshop
 - L. Gonella <u>https://indico.jlab.org/event/400/contributions/6533/</u>
 - G. Contin <u>https://indico.jlab.org/event/400/contributions/6536/</u>
 - L. Greiner https://indico.jlab.org/event/400/contributions/6541/
 - A. Collu <u>https://indico.jlab.org/event/400/contributions/6544/</u>
 - I. Sedgwick <u>https://indico.jlab.org/event/400/contributions/6535/</u>
 - H. Wennlöf <u>https://indico.jlab.org/event/400/contributions/6529/</u>
 - R. Cruz-Torres https://indico.jlab.org/event/400/contributions/6532/
 - E. Sichterman <u>https://indico.jlab.org/event/400/contributions/6519/</u>