FEA Analysis Summary SFGD BOX

A. Gendotti

1

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

- FEA studies Static and Dynamic
- All Materials were tuned including effect of the holes (implementing various tests that has been done)
- Simplyfication at the model were done trying to be conservative
- <u>First Analysis:</u> Static Structural 1. Self Weight 2.0.65g in each direction:
 1. Cubes simulated as a Force
 2. it's pratically considering as100% the Mass partecipation of the cubes with a 0.65g acceleration in each direction
 - \rightarrow Deformations always under 5mm
 - \rightarrow Stresses always below the limit (SF included)
- <u>Second Analysis</u>: Tentative to implement the cubes as a solid and perform a dynamic random vibration test using the PSD spectrum given by KEK.
 → Acelleration response always below the 0.65g calculated in the static structural analysis

• The fact that the maximum allowed deformation of the Box was set as 5mm, has brought a very stiff design. Here below images of deformation at different scenarios

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

<u>SIS</u>	Scenario 1	Material	Yield Stress [MPa]	Von Mises [MPa]	SF	SFM	$MoS = \frac{\sigma_m}{\sigma \cdot SF \cdot SFM} - 1 \ge 0$
	Earth gravity	AISI 316L	290	118.28	1.1	1.1	1.026
	+0.65g in –Z	ALU 6061-T651	276	36.351	1.1	1.1	5.275
	direction	FR4/G10	300	5.5928	1.1	2.0	23.382
		PMMA/Acrylic	62	3.4881	1.1	2.0	7.075
		Divinycell H250	9.2	3.0395	1.1	2.0	0.3758
							Inverse Reserve Factor <1
Self Weight + 0.65g Z-direction		Carbon Fiber					0.1144

D: Static Earthquake Load Bottom Panel

Total Deformation Unit: mm Time: 1 Max: 4.3347 Min: 0

> 4.3347 3.8531 3.3715 2.8898 2.4082 1.9266 1.4449 0.96328 0.48164

> > 0

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

4

ANSYS 2019 R3

ANSYS

ANSYS 2019 R3

DYNAMIC STRUCTURAL ANALYSIS

(no_cubes)

8

Figure 3-13 Bottom Panel PSD response; cubes weight as a Force - PSD results of acceleration

A peak is found at 36.625 [Hz] with a PSD response of 2660.6 $[(mm/s^2)^2/Hz]$

Indicatively vibrational acceleration derived of the Top Panel \rightarrow a= 0.308 m/s²

Figure 3-14 Top Panel PSD response; no cubes effect - PSD results of acceleration

A peak is found at 39.684 [Hz] with a PSD response of 680.73 [(mm/s²)²/Hz]

Indicatively vibrational acceleration derived of the Top Panel \rightarrow a= 0.164 m/s²

Results DYNAMIC STRUCTURAL ANALYSIS: Cubes Implemented

Linear System with all contact bonded

Results DYNAMIC STRUCTURAL ANALYSIS: Cubes Implemented

Linear System with all contact bonded

PSD amplitude response (Y-axis) at Top and Bottom Panel

Indicatively vibrational amplitude derived of the Top Panel $\,{\rightarrow}\,A{=}\,0.042~{\rm mm}$

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Results DYNAMIC STRUCTURAL ANALYSIS: Cubes Implemented

Linear System with all contact bonded

PSD amplitude response (X-axis) at Top and Bottom Panel

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich