

Towards a Herwig dark shower + hadronization module and an attempt to better probe the dark sector

Of A HUECRURO

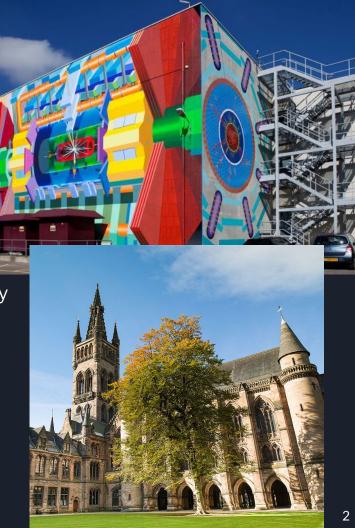
Sukanya Sinha

22nd MCnet meeting 21st April 2021

Alongwith Andy Buckley, Deepak Kar, Andrzej Siodmok, Peter Richardson



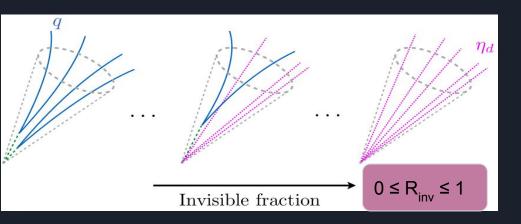


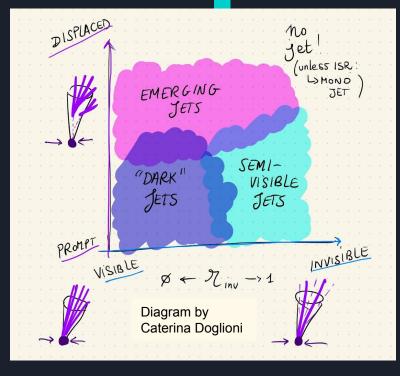

## Who am I?

Member of ATLAS expt

PhD student @ School of Physics, University of Witwatersrand, South Africa

### MCnet Shortie @ Glasgow University



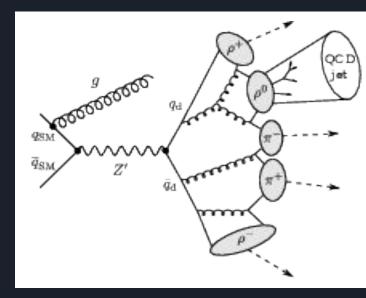



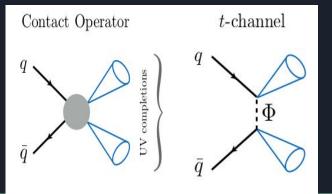

### Introduction

- Look at unusual topologies & hidden phase space corners
- Dark hadrons decay <u>promptly</u> in a QCD-like fashion partially back to visible sector (semi-visible jets "SVJ") <u>Initial motivation</u>
   Showering using Pythia hidden valley

module







Based on the Paper: LHC Searches for Dark Sector Showers : Tim Cohen et al [arXiv: <u>1707.05326</u>]

## Hidden Valley: Semi-visible jets idea

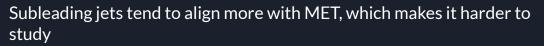
Two different dark quark flavours

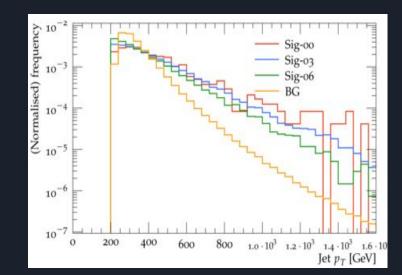
- ► Combine to form  $\pi^+$ ,  $\pi^-$ ,  $\pi^0$ , and  $\rho^+$ ,  $\rho^-$ ,  $\rho^0$  (assumed to be produced thrice as much as pions)
- Only p<sup>0</sup> is unstable and (promptly) decays to SM quarks: more likely to decay to b pairs due to need for a mass insertion, to make the angular momentum conservation work out
- ► Other mesons are (collider-)stable  $\rightarrow$  invisible

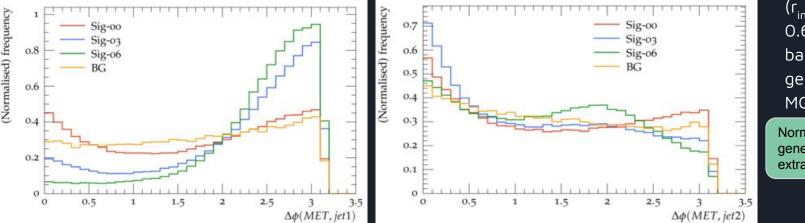




### **Model Parameters:**


1.  $M_{\phi}$  = Mass of Scalar Bi - fundamental (mediator) 2.  $M_{d}$  = Mass of dark hadrons 3.  $r_{inv}$  = no. of stable dark hadrons/ no. of hadrons

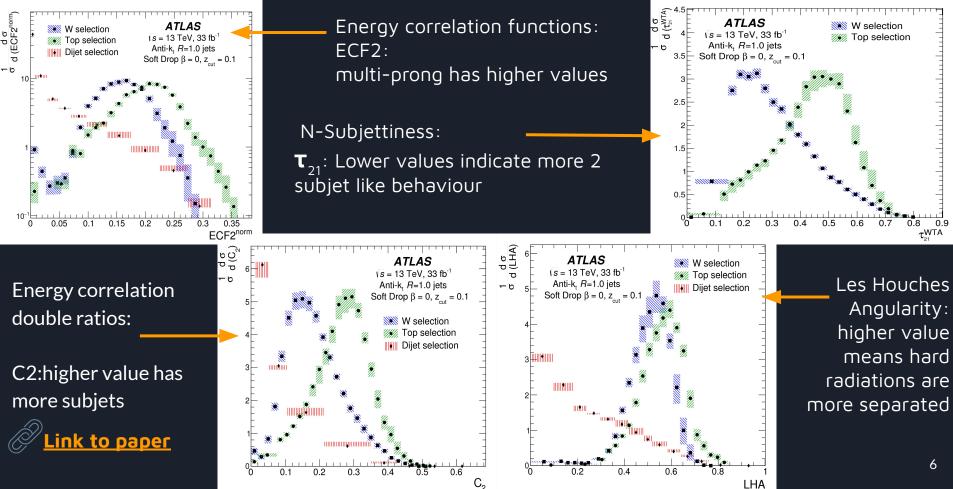

### Jet-substructure study


D.Kar & SS: https://arxiv.org/abs/2007.11597

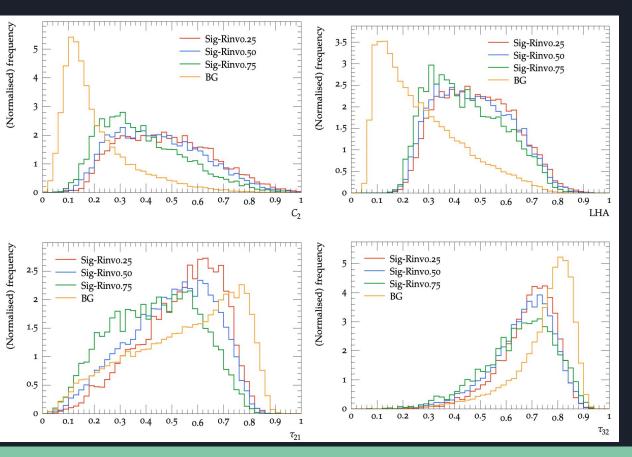
- Comparing jet substructure variables to see if SVJ substructure is different from light quark/gluon jets (BG). Do they behave more multi-pronged as opposed to mostly single prong?
- Comparison can be done in p<sub>T</sub> bins or in m/p<sub>T</sub> bins, picked the former, as there is no resonance.

t-channel makes it more challenging as no resonance peak



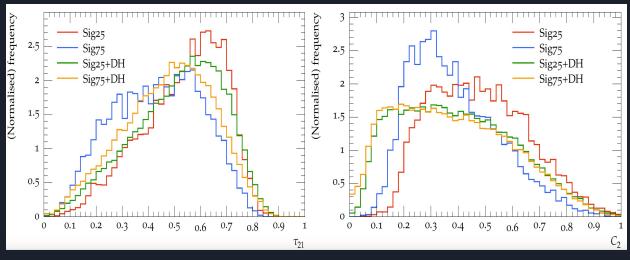






Signals (r<sub>inv</sub> = 0, 0.3, 0.6) and multijet background generated using MG5 + Py8

Normally signals are generated with upto two extra jets!

### Plots from ATLAS to explain how the JSS variables behave




## What effects are responsible for specific jet-substructure of semi-visible jets?



For finite r<sub>inv</sub> values, when only the visible hadrons are clustered in jets, subtle substructure difference observed for different Rinv values.

# What effects are responsible for specific jet-substructure of semi-visible jets?



If the final dark hadrons are also clustered in the jets ---> expect this difference to go away ----> the different amount of missing hadrons in each case presumably is responsible for the difference.

#### Conclusions:

- 1. The substructure becomes less two-pronged with visible and dark hadrons in them, and the absence of the dark hadrons create the two-pronged structure ---> The substructure is created by the interspersing of visible hadrons with dark hadrons.
- 2. Specific hidden valley parameter configurations can reduce the dark shower model dependent features of the signal jets.

### However....

- Mostly due to presence of only one dark shower module, so far, all studies are somewhat model dependent
- Several other observables may be out there, that can help discriminate these unconventional jets from the standard q/g jets

### However....

- Mostly due to presence of only one dark shower module, so far, all studies are somewhat model dependent
- Several other observables may be out there, that can help discriminate these unconventional jets from the standard q/g jets

# Necessity of an additional dark-shower

- → Herwig is using systematically different shower and hadronization models from Pythia
  - Herwig dark hadronization would naturally be cluster- rather than string-based, hence there really is a model difference.
- $\rightarrow$  Helps to get a better estimate of theory associated uncertainties.
- → Apart from the standard dark confinement scale, and the renormalisation scale multiplier in the shower, different hadronization procedure might also play a key role, and we suspect that the difference between cluster and string models could be similar to the individual physically feasible variations within either of them.

# Preliminary plan for implementation of Herwig HV hadronisation module

- → Start with dark mesons "only"
  - Masses comparable to QCD scale
- → Have a separate dark hadronization prehandler, that mimics the SM hadronization
  - sans the fission, and other complicated machinery at play in the SM part
- → This prehandler runs before the standard model hadronization handler

With a lot of help from Andrzej and Peter R (Thanks in advance!)



Because of completely different dark-sector radiation & hadronization relating to Pythia, it will help to better estimate model uncertainties.

### However....

- Mostly due to presence of only one dark shower module, so far, all studies are somewhat model dependent
- Several other observables may be out there, that can help discriminate these unconventional jets from the standard q/g jets

## Energy - flow polynomials

- A complete linear basis for jet substructure

J. Thaler et al

https://arxiv.org/pdf/1712.07124.pdf

What are EFPs?

• Observables that are multiparticle energy correlators with specific angular structures which directly result from IRC safety

EFPs form a linear basis of all IRC-safe observables, making them suitable for a wide variety of jet substructure contexts where linear methods are applicable

For a multigraph G with N vertices and edges  $(k, l) \in G$ , the corresponding EFP takes the form:

$$\mathrm{EFP}_G = \sum_{i_1=1}^M \cdots \sum_{i_N=1}^M z_{i_1} \cdots z_{i_N} \prod_{(k,\ell) \in G} \theta_{i_k i_\ell}$$

where the jet consists of M particles,  $z_i$  is the energy fraction carried by particle i, and  $\theta_{ii}$  is the angular distance between particles i and j.

Set of EFPs can be considered as the energy flow basis.

$$ullet_{j} \iff \sum_{i_{j}=1}^{M} z_{i_{j}} \quad k$$
 ———  $\ell \iff heta_{i_{k}i_{\ell}}$ 

Each edge (k,l) in a multigraph is in one-to-one correspondence with a term  $\theta$  in an angular monomial

Each vertex j in the multigraph corresponds to a factor of z and summation over  $i_i$  in the EFP

$$ullet_{j} \iff \sum_{i_{j}=1}^{M} z_{i_{j}} \quad k$$
 ————  $\ell \iff heta_{i_{k}i_{\ell}}$ 

Each edge (k,l) in a multigraph is in one-to-one correspondence with a term  $\theta$  in an angular monomial

Each vertex j in the multigraph corresponds to a factor of z and summation over  $i_i$  in the EFP

$$\bullet = \sum_{i_1=1}^M \sum_{i_2=1}^M z_{i_1} z_{i_2} \theta_{i_1 i_2}$$

2 particles/constituents in a jet ---> 2 energy fractions, 1 angularity value ----> degree 1 polynomial

$$igstarrow_{j}\iff \sum_{i_{j}=1}^{M}z_{i_{j}}\quad k$$
 ————  $\ell\iff heta_{i_{k}i_{\ell}}$ 

Each edge (k,l) in a multigraph is in one-to-one correspondence with a term  $\theta$  in an angular monomial

Each vertex j in the multigraph corresponds to a factor of z and summation over  $i_i$  in the EFP

$$\bullet = \sum_{i_1=1}^{M} \sum_{i_2=1}^{M} \sum_{i_3=1}^{M} \sum_{i_4=1}^{M} \sum_{i_4=1}^{M} z_{i_1} z_{i_2} z_{i_3} z_{i_4} \theta_{i_1 i_2} \theta_{i_2 i_3} \theta_{i_2 i_4}^2 \theta_{i_3 i_4}$$

4 particles/constituents in a jet ---> 4 energy fractions, 5 angularity values ----> degree 5 polynomial

Because the EFP basis is infinite, a suitable organization and truncation scheme is necessary to use the basis in practice.

| d     |    | 1 | 2 | 3 | 4        | 5  | 6         | 7   | 8   | 9    | 10   |
|-------|----|---|---|---|----------|----|-----------|-----|-----|------|------|
|       | 2  | 1 | 1 | 1 | 1        | 1  | 1         | 1   | 1   | 1    | 1    |
|       | 3  |   | 1 | 2 | 3        | 4  | 6         | 7   | 9   | 11   | 13   |
|       | 4  |   |   | 2 | <b>5</b> | 11 | 22        | 37  | 61  | 95   | 141  |
|       | 5  |   |   |   | 3        | 11 | <b>34</b> | 85  | 193 | 396  | 771  |
| $ _N$ | 6  |   |   |   |          | 6  | 29        | 110 | 348 | 969  | 2445 |
|       | 7  |   |   |   |          |    | 11        | 70  | 339 | 1318 | 4457 |
|       | 8  |   |   |   |          |    |           | 23  | 185 | 1067 | 4940 |
|       | 9  |   |   |   |          |    |           |     | 47  | 479  | 3294 |
|       | 10 |   |   |   |          |    |           |     |     | 106  | 1279 |
|       | 11 |   |   |   |          |    |           |     |     |      | 235  |

Several combinations for diagrams possible

| ( | d  | 1 | 2 | 3 | 4 | 5  | 6         | 7   | 8   | 9    | 10   |
|---|----|---|---|---|---|----|-----------|-----|-----|------|------|
|   | 2  | 1 | 1 | 1 | 1 | 1  | 1         | 1   | 1   | 1    | 1    |
|   | 3  |   | 1 | 2 | 3 | 4  | 6         | 7   | 9   | 11   | 13   |
|   | 4  |   |   | 2 | 5 | 11 | 22        | 37  | 61  | 95   | 141  |
|   | 5  |   |   |   | 3 | 11 | <b>34</b> | 85  | 193 | 396  | 771  |
| N | 6  |   |   |   |   | 6  | 29        | 110 | 348 | 969  | 2445 |
|   | 7  |   |   |   |   |    | 11        | 70  | 339 | 1318 | 4457 |
|   | 8  |   |   |   |   |    |           | 23  | 185 | 1067 | 4940 |
|   | 9  |   |   |   |   |    |           |     | 47  | 479  | 3294 |
|   | 10 |   |   |   |   |    |           |     |     | 106  | 1279 |
|   | 11 |   |   |   | , |    |           |     |     |      | 235  |

Several combinations for diagrams possible

Restricting ourselves to this regime...

The linked paper discusses in great detail how different EFP combinations lead to well-known jss observables

## What we ideally want to achieve with EFPs?

- Implement EFPs in Rivet and see if any particular combination of EFPs helps to distinguish between standard q/g jets and more unconventional jets
  - Leading to a new jet-substructure observable for dark shower discrimination (?)
- Very preliminary setup working (computing EFP multigraphs till N = 3, d = N 1, N, N + 1)

```
r (unsigned i = 0; i < constituents.size(); i++) {
  for (unsigned j = 0; j < constituents.size(); j++) {
    for (unsigned k = 0; k < constituents.size(); k++) {
      for (unsigned l = 0; l < constituents.size(); l++) {
         if (i==j || j==k || k==i || i==l || j==l || k==l) continue;
    }
}</pre>
```

EFP\_d3\_arrow = (constituents[i].pt()/ptJ)\*(constituents[j].pt()/ptJ)\*(constituents[k].pt()/ptJ)\*(constituents[l].pt()/ptJ)\*
deltaR(constituents[i].eta(), constituents[j].eta(), constituents[i].phi(), constituents[j].phi())\*
deltaR(constituents[i].eta(), constituents[k].eta(), constituents[i].phi(), constituents[k].phi())\*
deltaR(constituents[i].eta(), constituents[l].eta(), constituents[i].phi(), constituents[l].phi());

EFP\_d3\_bow = (constituents[i].pt()/ptJ)\*(constituents[j].pt()/ptJ)\*(constituents[k].pt()/ptJ)\*(constituents[l].pt()/ptJ)\*
deltaR(constituents[i].eta(), constituents[j].eta(), constituents[i].phi(), constituents[j].phi())\*
deltaR(constituents[k].eta(), constituents[k].eta(), constituents[k].phi(), constituents[k].phi())\*
deltaR(constituents[k].eta(), constituents[l].eta(), constituents[k].phi(), constituents[l].phi());

 $\circ$  Hopefully more substantial results to be shown in the next MCnet meeting :-)