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Disclaimer

This lecture has profited a lot from the following resources:

® The text book by Halzen&Martin, Quarks and Leptons
® The text book by Ellis, Stirling & Webber, QCD and Collider Physics
® The lecture on DIS at the CTEQ school in 2012 by F. Olness

® The lecture on DIS given by F. Gelis Saclay in 2006



Lecture |

Kinematics of Deep Inelastic Scattering

Cross sections for inclusive DIS (photon exchange)

. OPE

Longitudinal and Transverse Structure functions

. CC and NC DIS

Bjorken scaling
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/. The Parton Model

8. Which partons!?

9. Structure functions in the parton model
10.The pQCD formalism

| I. NLO corrections to DIS

| 2. Parton evolution



Not covered

DIS with massive quarks
Target mass corrections
QCD studies with neutrinos

Polarised DIS

DIS off spin-| targets






What is inside nucleons?

» Basic idea: smash a well known probe on a nucleon or
nucleus in order to try to figure out what is inside

» Photons are well suited for that purpose because their
interactions are well understood

» Deep inelastic scattering: collision between an electron and
a nucleon or nucleus by exchange of a virtual photon

® Note: the virtual photon is spacelike:q2 < 0

d e Deep:Q?=-q>> M2~ GeV?

— X

pP,A ¢ [Inelastic:\W2=Mx? > Mn?

» Variant: collision with a neutrino, by exchange of a Z°% or W+
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Kinematic variables

Let’s consider inclusive DIS where a sum over all
hadronic final states X is performed:

e-()+N(p) — e-(")+X(px)
On-shell conditions: p2=M2, 2=]2=m?2

Measure energy and polar angle of scattered electron (E’,0)

Other invariants of the reaction:

o Q) =—¢>=—(1—-1")? > 0, the square of the momentum transfer,

o V:p.q/Mla:bEl—El/,

e 0<z=0Q%/(2p-q) = Q*/(2Mv) < 1, the (dimensionless) Bjorken scaling variable,
lab

e 0<y=p-q/p-1 = (E — Ey)/E; <1, the inelasticity parameter,

* Here ‘lab’ designates the proton rest frame p=(M,0,0,0) which coincides with the lab frame for fixed target experiments



Kinematic variables

There are two independent variables to describe the
kinematics of inclusive DIS (up to trivial ¢(p dependence):

(E,,0) or (%,Q2) or (x,Yy) or ...

Relation between Q2, x,and y:

2 .
Q= (2p- DL )Yy s=9p
2p-q° p-l 5 9 o P
= Sxy =2M Exy =@+ —p 1

Invariant mass W of the hadronic final state X:
(also called missing mass since only outgoing electron measured)

W2=M2=(p+q)?=M2142- qiq? elastic scattering: W =Mn, x=I
2 2
2 2 2
= My + ?—Q = My + ?(1—37) inelasticc W = Mn + m, x<lI



The ep—eX cross section as function of W

$B5 : E =10 GeV Halzen&Martin,
T :"t, ; f Q‘Ml ‘ s Quarks&Leptons, Fig. 8.6
7 ol 3 M
§ 3 f "C’f W o Data from SLAG;
e ‘ e R The elastic peak at W=M
S | i has been reduced by a
A & k. : | e factor 8.5

o

1 S 1"-
00 T1 2 3
(GeV/c?)

Elastic A resonance Inelastic
peak ep—eA*—epn® region

Elastic peak: W=M, x=1 (proton doesn’t break up: ep—ep)

Resonances: W=Mpg, W=1/x=1+(Mgr2-M2)/Q2
(Note that there is also a non-resonant background in the resonance region!)

‘Continuum’ or ‘inelastic region: W>~1.8 GeV
complicated multiparticle final states resulting in a smooth distribution in W
(Note there are also charmonium and bottonium resonances at W~3 and 9 GeV)



Phase Space in (v,Q?) plane

— Halzen&Martin,
QZ_ (2 M EX))’ Quarks&Leptons, Fig. 9.3

/ %) Allowed kinematic region

\ Line of constant

Invariant mass

2ME ¢

7

\ Line of constant

momentum fraction

ME

Fixed W=MRgr: Q2=2MEXxy, x=Q2/(Q2+MRgr2-M2) - Q2 = M2-MRgr2+ 2MEy
Hence: fixed W curves are parallel to W=M curve!



Phase Space in (v,Q?) plane
Q%=(2MEx)y

® The phase space is separated into a

A resonance region (RES) and the
02 inelastic region at W~1.6 ... 1.8 GeV
M | (red line)

® The phase space is separated into a
W~1.8 GeV deep and a shallow region at

Q2 ~1 GeV2 (blue horizontal line)

® |n global analyses of DIS data often the
DIS cuts Q2>4 GeV2, W>3.5 GeV
are employed

ME

® The W-cut removes the large x region:
W2= M2 + Q2/x (1-x) > 3.5 GeV

~| GeV2

7 shallow inelastic

— 0 S

® The Q-cut removes the smallest x:
Q2=S xy >4 GeV2



Q2=(2MEx)y

2ME ¢
W~1.8 GeV

With increasing energy E
the deep inelastic region

ME } dominates the phase space!

~| GeV2

=




Neutrino cross sections at atmospheric V energies

With increasing energy E the deep inelastic region dominates the phase space!
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Homework Problems

Recap that the allowed kinematic region for ep—eX is 0<x=<1 and 0<y=<1.
Construct the phase space in the (V,Q2)-plane yourself. [Ex. 8.1 | in Halzen]

Show that Q2 = 2 E E¢ (I - cos(0)) = 4 E E* sin2(0/2) neglecting the lepton mass.
Here, the z-axis coincides with the incoming lepton direction and 0 is the polar angle of
the outgoing lepton with respect to the z-axis

Show that in the target rest frame x= [2 E E* sin2(0/2)]/[M(E-F’)]
still neglecting the lepton mass and the energies E, E’ are now in the target rest frame






The cross section for inclusive ep—eX

Let’s consider inclusive DIS where a sum over all
hadronic final states X is performed:

e(D+N(p) = e (P)+X(px)

The amplitude (A) is proportional to the interaction of a
leptonic current (j) with a hadronic current (}):

1
A~ —jH]
L

q2
The leptonic current is well-known = sp gL s = a(l, sp)yrull, s;)
perturbatively in QED:
The hadronic current is non-pert. JH = (X spins]j“ D, 5,)

— y ’ 9D

and depends on the multi-particle final
state over which we sum:



The cross section for inclusive ep—eX

The cross section which is proportional to the amplitude squared can be factored into a
leptonic and a hadronic piece:

do ~ |A|* ~ L, WH"

A A

Leptonic tensor
calculable in pert. theory

Hadronic tensor
not calculabe in pert. theory




The cross section for inclusive ep—eX

d3l’ 1 [ e d31’
2

1
d — — A 2 S ind — L v IL”/4
o ; F<’ x|%) pind Q) x (27)32F F | (g?)? p WA (2m)32F"

® With the Mgller flux:

F=4y(1-p)2—12p2 =4y/(l-p)2 —m2M?2 ~ 28§

® The phase space of the hadronic final state X with Nx particles:

N
k=1

® The amplitude with final state X:

e2 2

Ax = q—[ﬂ(l’)v“u(l)]<X\Ju(0)!N(p)> Ax = 2—2[ﬂ<l)’v”U(l’)]<N(p)!Ji(0)\X>



The cross section for inclusive ep—eX

do = (| AxPnd@x ot = L wivar| LT
UL R e X o a0 T F (22 T (en)32E

In the amplitude squared appears the leptonic tensor:

S‘S‘u ) YD a(l)yu(l)

Sl/

1

= §Tf[%(/l +m)y, (J +m)]

= 20,0, + LU, — g (-1 —m?)]

The hadronic tensor is defined as:

W= 3 [d0x(@m) 6 o+ g - px){( (NGO (X170 N )

Spin
states X >

Note that the factor 47 is a convention. In this case the hadronic tensor is dimensionless (Exercise!).

Halzen&Martin, for example, use a factor 4zM and the hadronic tensor has dimension mass-!.
20



The hadronic tensor and structure functions

Wuv(p,q) cannot be calculated in perturbation theory.
It parameterizes our ignorance of the nucleon.

q | q

Goal: write down most general covariant expression for Wuv(p,q)

Other symmetries (current conservation, parity, time-reversal inv.) P
have to be respected as well, depending on the interaction

All possible tensors using the independent momenta p, ¢ and the metric g are:

Juvs DPuPvs qubv, Pulv + Pvqu,
e/u/pappqaa p,uqy - pl/qM

For a (spin-averaged) nucleon, the most general covariant expression for Wyuv(p,q) is:

1Y v p,upV . v o‘p QJ
W (p, )= —g"" Wr+— Wo—ie"*7— W3

a"q" pP"q” +p"q" pP'q" —p
Ve W4+ 2 W5+ IVE
The structure functions W can depend only on the Lorentz-invariants p2=M2, g2, and p.q
21
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q,u
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The hadronic tensor and structure functions

19 vV I p’up’/ . 1Y o'p QG
WH(p, q)= —g"" Wit =z Wo—ie!? =2 Wy

K e IP“C]V—]?VQ“%G

Ve R M2

’

dO|W4 ~ ml2 dO'|W5 ~ ml2 dU]WG =0
Instead of p.q use V or X as argument: Wi = W(V,q2) or Wi=Wi,(x,Q?)

W doesn’t contribute to the cross section! No (Iy qv = Iv qu) in the leptonic tensor

W34 and W terms are proportional to the lepton masses squared in the cross section
since g Luv ~ m2, Only place where they are relevant is charged current v¢-DIS.

Parity and Time reversal symmetry implies Wy v=Wy,,

W3=0 and W=0 for parity conserving currents (like the e.m. current)

22



The hadronic tensor and structure functions

19 vV I p’upl/ . 1Y o'p QO'
WH(p, q)= —g"" Wit =z Wo—ie!? =2 Wy

K e Ip“q”—p”CJ“%G

Ve R M2

’

2 2 _
do|y, ~ m; dojw; ~ mj dojw, =0

® Current conservation at the hadronic vertex requires qtWyv = qVWv=0 implying

p-q p-q\’ M?
W5 :—q—QWQ, W4: (y) WQ—F?W:[

®  W/ith current conservation+parity symmetry we are left with 2 independent sfs:

UV 1 ) .
WW:<_QW+Q / )Wﬁ_(u_p_;qub)(u_ZD_;qu)WQ
q q q

23



The cross section for inclusive ep—eX

1 [ et a3l

e = L, W4
T F| (@2 " en)22E

Ly =210, + 11, — g (-1 — m?)]

WH = —g" Wi + = P1 Wo
uv v quJqV |5 v q p vk
g, =9 — %5 Py =P — 54
2
Show that (m=0): L, WH = 4(L- 1) W + 2 2(p-D(p-U") — ML U} Ws

Giving in th | tf :
iving in the nucleon rest frame L, W = AEE' [2sin2(0/2)W; + cos(0/2)Ws]

The DIS cross section in the nucleon rest frame reads (photon exchange, neglecting m):

d?c B agm o ; ;
JEAY — MAEZsimi(9)3) 2 1 @) sin(6/2) + Walw, Q7) cos™(6/2)




The cross section for inclusive ep—eX

The DIS cross section in the nucleon rest frame reads (photon exchange, neglecting m):

d?o ol :
TET = VA i) 2 (5 Q)50 (0/2) + Wa(e, Q%) cos?(6/2)
It is customary to define - Q’ Q° }
“scaling” structure functions: {Fl’ =2 FS} - {Wl’ 20 M? W2, xM? W

Change of variables (E’,(2*)— (X%,y) and W; —F;i:

Sh h o — 2mMy o PDG’I7, Eq. (19.1
ow that dedy 1 —vy dE'dSY -Ea.(19:1)

The DIS cross section in terms of Lorentz-invariants X, Yy (photon exchange, neglecting m):
2 2

d“o _ Aol S
dxdy Q4

2y’ Fi(z,Q%) + (1 —y — ayM* /S)Fa(z, Q)]

2 PDG’17, Eq. (19.8)




Homework Problems

Show that the phase space for the outgoing lepton takes the following form
in the variables X and y (without any approximation), where F is the flux and S=2 p.I:

°r 257y T
2m)32E  (4m)2F Y

Derive the following general expression for the doubly differential cross section:

45% 2ma? 5
Fz g VeV

d°o 252y {é

p— L 1 ,LLI/4 p—
dedy — (4m)2F2 | Q*H v ”}

(Note that the factor 4S2/F2 = 1+ O(m2/S * M2/S) and the mass term is negligibly small
for incoming neutrinos, electrons, and muons even if the nucleon mass is taken into account.)

Show that the hadronic tensor in terms of the structure functions Fj, F2 is given by:

1

W = —gh" Fy (x, Q%) - qp’ip’in(w,QQ)

26



Homework Problems

" Show that the hadronic tensor can be brought in the following forms:

W= 3 [d0x@n)'6 D+ g px)((NEILOXXT0)NE))

Spin
states X P

= 3 [dex [ dty én (NI XILOING))

states X

— /d4y eiqy<<N(p)‘Jj(y)JM(O)|N(p)>>spin
= /d4y eiqy<<N(p)HJi(y),JM(O)]|N(p)>>

spin

spin

® Use the integral representation for the delta-distribution:

2m)46W (p+ ¢ — px) = /dy pi(P+a—px)y _ /dy 010y pi(P—Px)y

® The space-time translation of an operator in QM is generated by the 4-momentum operator:

A

O(y) := eip'yOA(O)e_ip'y

® Use the completeness relation:

Z /dq)X‘XMX‘ =1

states X

® The second term in the commutator leads to g+px-p=0 violating mom. cons. q+p-px=0!






Hadronic tensor

Optical theorem: W, ocImT},,

«Im;bi

T = i / 'z 69 (N|T(JT] ()], (0)]|N)

29



OPE

Lit: Cheng, Li, pp. 298

T,uz/ — Z/d4aj €qu<N\T[JZL($)JV(O)HN> Muta

1, is dominated by contributions near the light cone (light cone dominance of DIS): x? ~ 0

This is the starting point for the OPE (a sort of Taylor expansions of the product of currents):

Note:
: a) independent of target
9 n 2
11J,(0)J,(0)] xNo Z C;;ftz} Fr(x )0” (0) b) OPE implies factorization into
7.0 Wilson coefficients and matrix elements

of local operators

Here O'" are different local operators with the same twist 7 = dim — spin
Definite spin n <> symmetric traceless tensors with n indices

The ci are the Wilson coefficients. Naive dimensional counting: ci — (V xz)f_zdf(ln(xz,uz)p

x“—0

The leading term has lowest twist.

30



OPE

After some manipulation (¢'®x* = — id/dqﬂeiq’“, d/0q, = g"0/0g?) and in the
approximation of keeping only the leading twist-2 operators one finds:

(60)

1 = 3 (=800, C + 8181,0°CY = i€, 50, CE
k=1
Q”q C2% 4 ( + oV glg )C2 22k_Ai T# Ho
Q2 Dy, ia gﬂ1q qﬂz gﬂlq Du, 156 Dus - - - Duy; Q4k 2k

A, is the reduced matrix element of the twist-2 operator and Clzk(qz) is the
(Fourier transformed) Wilson coefficient calculated using perturbation theory

k ) v
[TH-Hok = ZO — )] (2J(2k§)! ‘{g...g}l wp...p} (PZ)]]Z Py, Py,

j ghnHm’s (2k 2j) ptn’s '
where {g...g} {p4...p,}abbreviates a sum over (2k)!/[2j1(2k — 2j)!] permutations of the
indices.

31



OPE

Covariant expansion of 7 similar to W, (on page 19)

PuPy . . 4 P4, D4,
r,p.q=-g8,1+ IVE I, —ie,,,, IYE 15 + Yz T, + Yz Ts ¢

Neglecting target mass terms, things become much easier: j=0

Working out the contractions and using the relation between W, and 7 then relates Mellin
moments of the structure functions to the reduced matrix elements:

1 1

1 . .

J dxx”_leZ(x, 0?) = Ci’;A,fl,J dxx""'Fi(x,0%) = CIA] ,ETC
0 0

32
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Structure functions

1

WH = —gh* Fi (z, Q%) A qp’iPiFﬂxaQQ)

The sfs are non-perturbative objects which parameterize the
structure of the target as ‘seen’ by virtual photons

They are obtained with the help of projection operators:
Pi“v w”v o Fi

The projectors are rank-2 tensors formed out of the
independent momenta p, q and the metric g
(similar to Wyv)

One can introduce transverse and longitudinal structure
functions by contracting the hadronic tensor with the
polarization vectors for transversely/longitudinally polarized
virtual photons: Fr, FL

It turns out that: Fyr = 2xF,, F2 = FL + F1 (neglecting M)
34



Homework Problems Halzen, Chap. 8.5

4 )

Chosing the z-axis along the three-momentum ¢, such that ¢* = (¢",0,0,|q]),
the polarisation vectors of spacelike photons with helicity A = 0,+1 can be
written as:
1
A= =11 € = F—(0,1,42,0
£(0) = ¥ 5(0.1,%i.0)
1
A=0ces(q) = ——=—= (V1?2 —¢%,0,0,v)
—q
\ y,
- A

1. Verity that q-e¢ = 0 for each A\, and show the following completeness rela-
tion for a space like photon (g% < 0):

v

. y . . q"q
Y ()M (g)e () = —g* + o
A=0,%1 q

2. Neglecting terms of order O(M?/Q?) show that:

a) e, (q)el(Q)Wy = 5= Fr, with F, = F» — 2z0Fy = F, — Fr
b) [ (9)e (q) + €"(q)e” (q)))Wyr = 5= Pr with Pr = 2zF;

It is useful to do the calculation in the nucleon rest frame p = (M, 0,0, 0).

35
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Cross section for CC and NC DIS

The differential cross section for DIS mediated by
interfering gauge bosons B,B’ can be written as:

d°o d2aE8
dxdy - dxdy

B.B’

e B.B' €{v,Z} in the case of NC DIS

e B =B’ =1 in the case of CC DIS

BB’ BB’ yrruv
doB8" ~ LBE Wi,

Each of the terms dO®BP’ can be calculated from the general expression: PDG’I7,Eq.(19.2)
/CZ2O'BB/ 25%y [ et ) /XW(QQ) - \
dady "~ (4n]'F? |Q° e Was T | ieh - e A T e

= ii 22(1 YXBXB’ LEI/B/WgE’ xw(Q7) = (2\%2)262 02 fQMVzV a 3; ffav Q? fj\ﬁv
N 7N g

37



CC v+-DIS

Albright, Jarlskog’75
Paschos, Yu'98

d20u(u): G%MNE,/ (y2$ I mgy )FWi Kretzer, Reno’02
dedy (14 Q2%/M3,)? 2E, My~ 1
m? Mz = Y m2y +
1 — —Z) —(1- Y+ 1 —2)— —— FyY
F1= F5) - @ S| Y g - ) - |

Albright-Jarlskog relations:
(derived at LO, extended by Kretzer, Reno)

by =0
F2 2£IZ‘F5

valid at LO [O(a?)], My =0
(even for m,. # 0)

valid at all orders in ag,
for My =0, mg =0

Full NLO expressions (My # 0, m. # 0): Kretzer, Reno’02



SM prediction’

SM predictiion
100 150 200 B T ‘160“ — Au;o. AA ‘zoo
E [GeV]

a L a a a a 1 " " A A

39



Homework Problems

* Little research project:
Work out the cross sections for NC and CC DIS

(Find typos in the following expressions,
Compare with expressions in PDF review)

40



Cross section for CC and NC DIS

Show that for an incoming electron with general ,,(V —A~s) current the leptonic
tensor is given by (neglecting the lepton masses m; and my):

/ 1 _ / _
Lyr = 5 > S al, 0T u(l, Nal, AT u(l, )
AN

— % Tr|({ + ml)rfl’Yﬁ(I/‘|’ m2)r5]

= QL 1M1 11 — (1-1)g"™] + 4Ry 4 €0 po1P17

Here I'B = ~, (VP = AB~;), Ly = VBVE £ ABAB" R, =VBAB £ VB AB,

e

B | VP AP
v | —1 0

79| =1/2 +2sin%0,, —1/2
W1 ]

see Halzen&Martin

41



Cross section for CC and NC DIS

The weak currents are not conserved (*) and parity is violated. Therefore, one
has to assume the most general structure for the hadronic tensor. In particular

one has to include a parity violating piece ~ i€,,,,p”q": convention: €0123=+ |

/ v / p o /
Wi =~ PP (0, Q%) + PP (0, Q%) — gy PP (2,Q%)

7.9y / Puqy + Puq / Puqy — Puvq
+ = FPY (2,Q%) + 1 LEPP (2,Q%) + LFPE (2,Q7)
p-q 2p - q 2p - q

The terms proportional to F4, F5 will be proportional to the lepton masses
squared and are usually neglected (Fg will not contribute to the cross section
at all). Of course, these terms have to be kept in the hadronic tensor when
projecting out structure functions.

(*) With J# = a(p’)y.(v — avs)u(p) and using the Dirac equation one finds

quJt ~ a(m+m') with p* = m?, p’* = m'?. Therefore g, L*" ~ lepton mass.
42



Cross section for CC and NC DIS

We are now in a position to calculate the cross section:

d2oBB’ B A’ S
dedy Q4

XX [2yP Lo FPP 4+ (1= y — oy M?/S)L FPP — y(1 = y/2)2R, o PP ]

Introducing generalized structure functions we can form the Neutral Current (NC) cross section:

d2oNC B A’ S
dedy Q4

2y Y+ (1 —y — ayM?/S)F)C —y(1 — y/2)xF3 ]
with

2 2
FYC(@,Q%) = Fh+2x7 (—of) FE 4 x3 ((0F)" + (af)') PEE
Fy(x,Q%) = —2xzq TE)? + G20 al P

43
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Expectations from elastic ep scattering

Pointlike proton without spin, neglecting recoil:

dO.Mott 062

cos*(6/2)

A 4F2sin*(6/2) \

electron spin

Rutherford scattering

45



Expectations from elastic ep scattering

Pointlike proton without spin, neglecting recoil:

Hydrogen ¢ Scattered

Mott 2
= e 7 0/ Electron Target /(' Electron
S111 B
eam E @
It BN 77/ DR A
Pointlike proton with spin: \

Recoil
do  do™Mett B ) B - Proton
a0~ an g0 TArtan(9/2) 1 + %ﬂsinl 6/2

Q2

Q* = 4EFE' sin*(0/2)

T =

4M2°

46



Expectations from elastic ep scattering

Pointlike proton without spin, neglecting recoil:

i ) Hydrogen 3 Scattered
dUdQ - 8;4(9/2) cos?(6/2) Electron Target /(v Electron
Beam E0

Pointlike proton with spin: \
Recoil
£y

Proton

do dO.MottE/ ,
— = 1 + 27 tan?(6/2 L=
Q- an LT 2Ta02) 1 + 2Lasin? g2

Extended proton with spin (Rosenbluth formula):

do  doMott E/ GQE—I—TG?W % 2 _ /i 2
R -2 tan2(6/2 T = , Q° =4FEFE sin“(0/2)
ds) dQ E T+ TGy tan”(6/2) AM?
. -
*  Elstic form factor GE(Q?), Ge(0)=1 Steeply falling form factors
2
N
® Magnetic form factor Gm(Q?2), GMm(0)=Hp=2.79 : /;p
Mp=2.79: proton anomalous magnetic moment a® = 0.71 GeV

47 \-



Expectations from elastic ep scattering

Pointlike proton without spin, neglecting recoil:  Note that the idea of a point-like strongly
interacting particle is rather academic!

dOMott 042

dQ  4E%sin’(0/2)

cos?(0/2) Due to quantum corrections we have to
generalize the ‘point-like current’ by the most

general current respecting all symmetries of the

Pointlike proton with spin:

do dO.Mott E/

= = E[1+27tan2(9/2)]

Extended proton with spin (Rosenbluth formula):

do doMot B/ TG2, + 7G%,
dQ  dQ) FE 147

+ 27G3, tan”(0/2)

® Elastic form factor ,

® Magnetic form factor ,

proton anomalous magnetic moment
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interaction and introduce form factors.

T = o Q* = 4EFE'sin*(0/2)

4M2°

This is even the case in QED. However, here the
Dirac and Pauli form factors are calculable in

perturbation theory.

-

\_

Steeply falling form factors:

_Gu(Q?) _

Gr(Q?)

Hp

a’> = 0.71 GeV?

(14 Q*/a”)~?

~

J




What do we expect for a point-like particle?

Point-like proton without spin, neglecting recoil: Point-like proton/muon with spin:
dO.Mott 062 , do dO.Mott ,
= cos“(0/2 20 1+ 27 tan”(6/2)]
dQ  4E2sin*(6/2) (6/2) ait  dil E

/\/\/\/ 47Toz . Fred Olness,
X CTEQ school 2012

42
/\/\/\/\/\/\/ ‘ do ~ g; % 1

W, @) e
el \

Structure Function
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Expectations from elastic ep scattering

Elastic Electron-Proton Scattering
1000
Nucleon Form Factors Versus Q2 EN
0.8 . \ ~— Theta = 10 Degrees
. * Ggp 100 \ e — —
o - Yoy = G Mp/ 2.79 g ] \ Mott Scattering
o} : g 10
S q"fi ¢ Gpn/ (-1.91) : { \
5 R, ; S
L l § + ¢ %
{ B s \
g : Finite Proton
" 001 . -
0 ________ 1——;__;__‘ _____ ; _____ { __—__+ . q \
N 2
(G En) , , 1 ~_
’ l ' I L 0001 2 3 4 5 6 1 8
0 1 0 20 30 | MOMENTUM TRANSFER SQUARED (GeV-Square)
02 (fermi)-2 Fig. 4. Elastic scattering cross sections for electrons from a “point” proton and for the actual

proton. The differences are attributable to the finite sire of the proton.

Fig. 23. Summary of results on nuclear form factors presented by the Stanford group at the
1965 “International Symposium on Electron and Photon Interactions at High Energies”. (A
momentum transfer of 1 GeV’is equivalent to 26 Fermis®.)

The results formed the prejudice that the proton was a soft “mushy’ extended obiject,
possibly with a hard core surrounded by a cloud of mesons, mainly pions.

The SLAC-MIT team saw its objective in searching for the hard core of the proton.
First DIS experiments (>=1967).
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Bjorken scaling

Elastic scattering (Rosenbluth formula):

do _
aQ

doMett B G2 + 1G3,
Q) E 1+7

+ 27G%, tan2(9/2)]

The DIS cross section resembles the
elastic one:

dopis ~ do ™" Wy + 2W; tan?(6/2)]

The form factors had been know to fall
rapidly as a function of Q2.

Therefore, the general expectation for
Opis before its measurement was that it
also would be a fast falling function of Q2.

Early data on DIS from the SLAC-MIT experiment

[PRL23(1969)935]

'E i e i T I ; =
\ 6-=10"
:, s — W=2 GeV
B\ ~ -=- W=3 GeV
s —— W=35 GeV
|C).l [— -
_ - ’
: | \ 1
R 1021 ' Obis depends only T~
b - \ . 3
- \ mildly on Q2 .
0 2| N ELASTIC |
- \_SCAT TERING .
- ‘\‘ |
= \\ _
\~
104 1 1 1 | L L >
o} | 2 3 4 5 6

q? (GeV/c)®
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Bjorken scaling

Scaling hypothesis (Bjorken 1968):

In the limit Q2— 00, V— 00, such that x=Q2/(2MV) is fixed (‘Bjorken limit’)
the structure functions Fi(%,Q?2) are insensitive to Q2: Fi=F;(x)

This behaviour is called scaling and x is called the scaling variable
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Bjorken scaling

Scaling hypothesis (Bjorken 1968):

In the limit Q2— 00, V— 00, such that x=Q2/(2MV) is fixed (‘Bjorken limit’)
the structure functions Fi(%,Q?2) are insensitive to Q2: Fi=F;(x)

This behaviour is called scaling and x is called the scaling variable

Scaling implies that the nucleon appears as a collection of point-like
constituents when probed at very high energies (Q?2 large).

The possible existence of such point-like constituents was also proposed by
Feynman from a different theoretical perspective and he gave them the name
‘partons’.
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Structure of the proton

Fred Olness,
CTEQ school 2012

QZ
)

A of order of the
proton mass scale

54



Bjorken scaling for F>
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Bjorken scaling for Fi

ZEUS collab, arXiv:0904.1092

AF2
:—QFL

]l =—ZEUS-JETS

We note that Fv is quite smaller than F2.

The HERA combined measurement of FL
is compatible with scaling

H1 and ZEU

HERA Inclusive Working Group
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L — Q%35 GeV? FFNS
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The End of Lecture |
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