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Disclaimer

This lecture has profited a lot from the following resources:

• The text book by Halzen&Martin, Quarks and Leptons

• The text book by Ellis, Stirling & Webber, QCD and Collider Physics

• The lecture on DIS at the CTEQ school in 2012 by F. Olness

• The lecture on DIS given by F. Gelis Saclay in 2006



Lecture 1

1.  Kinematics of Deep Inelastic Scattering

2. Cross sections for inclusive DIS (photon exchange)

3. OPE

4. Longitudinal and Transverse Structure functions

5. CC and NC DIS

6. Bjorken scaling 



Lecture 1I

7. The Parton Model

8. Which partons?

9. Structure functions in the parton model 

10.The pQCD formalism

11. NLO corrections to DIS

12. Parton evolution 
 



Not covered

• DIS with massive quarks

• Target mass corrections

• QCD studies with neutrinos

• Polarised DIS

• DIS off spin-1 targets



1. Kinematics of Deep Inelastic Scattering
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‣ Basic idea: smash a well known probe on a nucleon or 
nucleus in order to try to figure out what is inside

‣ Photons are well suited for that purpose because their 
interactions are well understood

‣ Deep inelastic scattering: collision between an electron and 
a nucleon or nucleus by exchange of a virtual photon  
 
 
 
 
 

‣ Variant: collision with a neutrino, by exchange of a Z0 or W±

What is inside nucleons?

e-

p , A

q

X

• Note: the virtual photon is spacelike: q2 < 0

• Deep: Q2 = -q2 >> MN2~1 GeV2 

• Inelastic: W2≣MX2 > MN2

7



Kinematic variables
• Let’s consider inclusive DIS where a sum over all  

hadronic final states X is performed:  
 
 e-(l)+N(p) → e-(l’)+X(pX)

• On-shell conditions: p2=M2,  l2=l’2=m2

• Measure energy and polar angle of scattered electron (E’,θ)

• Other invariants of the reaction:  

18 Masses in deep inelastic scattering

Figure 2.1: Kinematics of DIS in the single exchange boson approximation.

broken up such that the final state consists of the scattered lepton and a hadronic final

state X. Here, l and l0 are the four-momenta of the incoming and outgoing leptons,

q = l � l0 is the four-momentum of the exchange boson (�, Z, or W ) and p the four-

momentum of the hadron. The hadronic final state X carries the four-momentum pX .

In DIS processes, an inclusive sum over all hadronic final states is performed. Therefore,

only the initial state momenta l and p and the final lepton momentum l0, which has to be

measured, are available to describe the kinematics of DIS.

It is useful to introduce the following Lorentz-invariant quantities to describe the

kinematics of a DIS process:

• Q2 = �q2 = �(l � l0)2 > 0, the square of the momentum transfer,

• ⌫ = p · q/M lab
= El � El0 ,

• 0  x = Q2/(2p · q) = Q2/(2M⌫)  1, the (dimensionless) Bjorken scaling variable,

• 0  y = p · q/p · l lab
= (El � El0)/El  1, the inelasticity parameter,

• s = (p+ l)2, the square of the lepton–hadron energy in the center-of-mass system,

• S = 2p · l = s�M2 �m2, where M is the hadron mass and m the lepton mass,

• W 2 = p2X = (p+ q)2, the square of the invariant mass of the hadronic final state.

θl
l′

q

P

X

* Here ‘lab’ designates the proton rest frame p=(M,0,0,0) which coincides with the lab frame for fixed target experiments



Kinematic variables
• There are two independent variables to describe the  

kinematics of inclusive DIS (up to trivial φ dependence):  
 
 (E’,,θ) or (x,Q2) or (x,y) or ...

• Relation between Q2, x, and y:  
 
 
 
 

• Invariant mass W of the hadronic final state X:  
(also called missing mass since only outgoing electron measured) 

θl
l′

q

P

X
Q2 = (2p · l)( Q2

2p · q )(
p · q
p · l )

= Sxy = 2MExy

elastic scattering:  W =MN,  x=1

inelastic: W ≥ MN + m𝜋,  x<1

S = 2p · l
= (p+ l)2 � p2 � l2

W 2 ⌘ M2
X = (p+ q)2 = M2

N + 2p · q+q2

= M2
N +

Q2

x
�Q2 = M2

N +
Q2

x
(1�x)
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The ep→eX cross section as function of W

B. Kilminster (Uni. Zürich) – Phenomenology of Particle Physics, FS2015

Electron-proton scattering
The scattering picture used so far needs to be extended for a composite object 
The invariant mass spectrum shows the elastic peak, excited baryons followed by an  
inelastic smooth distribution

13

ki kfe- e-

}...

1

2

n

q

e-

p

Invariant 
mass W Elastic  

peak
a resonance 

ep→ea+→epé0
Inelastic 
region

W 2 = (p + q)2 = M2 + 2M⌫ + q2

The missing mass of the hadronic system can be derived from 
measuring electron

Halzen&Martin,  
Quarks&Leptons, Fig. 8.6

Data from SLAC;
The elastic peak at W=M 

has been reduced by a 
factor 8.5

• Elastic peak: W=M, x=1 (proton doesn’t break up: ep→ep)

• Resonances: W=MR, ω=1/x=1+(MR2-M2)/Q2  

(Note that there is also a non-resonant background in the resonance region!)

• ‘Continuum’ or ‘inelastic region‘:  W>~1.8 GeV 
complicated multiparticle final states resulting in a smooth distribution in W 
(Note there are also charmonium and bottonium resonances at W~3 and 9 GeV)  



Phase Space in (ν,Q2) plane

B. Kilminster (Uni. Zürich) – Phenomenology of Particle Physics, FS2015

Kinematic phase-space
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x = 1! �q2 = 2M⌫ !W 2 = M2

Elastic scattering

Line of constant  
invariant mass

Line of constant  
momentum fraction

Allowed kinematic region
2ME

ME

Q2=(2MEx)y

Fixed W=MR: Q2=2MExy, x=Q2/(Q2+MR2-M2) → Q2 = M2-MR2+ 2MEy  
Hence: fixed W curves are parallel to W=M curve!

Halzen&Martin,  
Quarks&Leptons, Fig. 9.3



B. Kilminster (Uni. Zürich) – Phenomenology of Particle Physics, FS2015

Kinematic phase-space

14

x = 1! �q2 = 2M⌫ !W 2 = M2

Elastic scattering

Line of constant  
invariant mass

Line of constant  
momentum fraction

Allowed kinematic region
2ME

ME

Q2=(2MEx)y

shallow

deep inelastic

inelastic

Re
so

na
nc

es
W~1.8 GeV

~1 GeV2

• The phase space is separated into a 
resonance region (RES) and the 
inelastic region at W~1.6 ... 1.8 GeV 
(red line)

• The phase space is separated into a 
deep and a shallow region at  
Q2 ~1 GeV2 (blue horizontal line)

• In global analyses of DIS data often the 
DIS cuts Q2>4 GeV2, W>3.5 GeV 
are employed

• The W-cut removes the large x region:  
W2= M2 + Q2/x (1-x) > 3.5 GeV

• The Q-cut removes the smallest x:  
Q2 = S x y > 4 GeV2  
  

Phase Space in (ν,Q2) plane
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B. Kilminster (Uni. Zürich) – Phenomenology of Particle Physics, FS2015

Kinematic phase-space

14

x = 1! �q2 = 2M⌫ !W 2 = M2

Elastic scattering

Line of constant  
invariant mass

Line of constant  
momentum fraction

Allowed kinematic region
2ME

ME

Q2=(2MEx)y

deep inelastic

W~1.8 GeV

With increasing energy E 
the deep inelastic region  
dominates the phase space!

~1 GeV2

Phase Space in (ν,Q2) plane
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Neutrino cross sections at atmospheric Neutrino cross sections at atmospheric nn energies energies

Paschos,JYY,PRD65(2002)033002

P. Lipari, hep-ph/0207172

Neutrino cross sections at atmospheric ν energies
With increasing energy E the deep inelastic region dominates the phase space!
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Homework Problems

1. Recap that the allowed kinematic region for ep→eX is 0≤x≤1 and 0≤y≤1.  
Construct the phase space in the (ν,Q2)-plane yourself. [Ex. 8.11 in Halzen]

2. Show that Q2 = 2 E E‘ (1 - cos(θ)) = 4 E E‘ sin2(θ/2) neglecting the lepton mass.  
Here, the z-axis coincides with the incoming lepton direction and θ is the polar angle of 
the outgoing lepton with respect to the z-axis

3. Show that in the target rest frame x= [2 E E‘ sin2(θ/2)]/[M(E-E’)]  
still neglecting the lepton mass and the energies E, E’ are now in the target rest frame
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II. Cross section for inclusive DIS  
(photon exchange)



The cross section for inclusive ep→eX

• Let’s consider inclusive DIS where a sum over all  
hadronic final states X is performed:  
 
 e-(l)+N(p) → e-(l’)+X(pX)

• The amplitude (A) is proportional to the interaction of a  
leptonic current (j) with a hadronic current (J):  
 

θl
l′

q

P

X

A ⇠ 1

q2
jµJµ

• The leptonic current is well-known  
perturbatively in QED:

• The hadronic current is non-pert.  
and depends on the multi-particle final 
state over which we sum:  
 
 

Jµ = hX, spins|Ĵµ|p, spi

jµ = hl0, sl0 |ĵµ|l, sli = ū(l0, sl0)�
µu(l, sl)
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Leptonic tensor
calculable in pert. theory  

Hadronic tensor
not calculabe in pert. theory

The cross section for inclusive ep→eX

l

p

l'γµ γν
l

p
pX

Q2 Q2

Jµ Jν

Lµν

Wµν

M M*A A*

d� ⇠ |A|2 ⇠ Lµ⌫W
µ⌫

The cross section which is proportional to the amplitude squared can be factored into a 
leptonic and a hadronic piece:
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The cross section for inclusive ep→eX

F = 4
p

(l · p)2 � l2p2 = 4
p

(l · p)2 �m2M2 ' 2S

AX =
e2

q2
[ū(l0)�µu(l)]hX|Jµ(0)|N(p)i

• With the Møller flux:  
 
 
 

• The phase space of the hadronic final state X with NX particles:  
 
 
 

• The amplitude with final state X:  

d� =
X

X

1

F
h|AX |2ispindQX

d3l0

(2⇡)32E0 =
1

F


e4

(q2)2
Lµ⌫W

µ⌫4⇡

�
d3l0

(2⇡)32E0

dQX = (2⇡)4�(4)(p+ q � pX)
NXY

k=1

d3pk
(2⇡)32Ek

= (2⇡)4�(4)(p+ q � pX)d�X

A⇤
X =

e2

q2
[ū(l)�⌫u(l0)]hN(p)|J†

⌫(0)|Xi
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The cross section for inclusive ep→eX

l

p

l'γµ γν
l

p
pX

Q2 Q2

Jµ Jν

Lµν

Wµν

M M*A A*

d� =
X

X

1

F
h|AX |2ispindQX

d3l0

(2⇡)32E0 =
1

F


e4

(q2)2
Lµ⌫W

µ⌫4⇡

�
d3l0

(2⇡)32E0

4⇡Wµ⌫ =
X

states X

Z
d�X(2⇡)4�(4)(p+ q � pX)

D
hN(p)|J†

⌫(0)|XihX|Jµ(0)|N(p)i
E

spin

The hadronic tensor is defined as:

Note that the factor 4𝜋 is a convention. In this case the hadronic tensor is dimensionless (Exercise!).

Halzen&Martin, for example, use a factor 4𝜋M and the hadronic tensor has dimension mass-1. 

In the amplitude squared appears the leptonic tensor:

Lµ⌫ =
1

2

X

sl

X

sl0

ū(l0)�µu(l)ū(l)�⌫u(l
0)

=
1

2
Tr[�µ(l/+m)�⌫(l

0/+m)]

= 2[lµl
0
⌫ + l⌫ l

0
µ � gµ⌫(l · l0 �m2)]
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The hadronic tensor and structure functions
• Wμν(p,q) cannot be calculated in perturbation theory.  

It parameterizes our ignorance of the nucleon.

• Goal: write down most general covariant expression for Wμν(p,q)

• Other symmetries (current conservation, parity, time-reversal inv.) 
have to be respected as well, depending on the interaction  

q q

p p

• All possible tensors using the independent momenta p, q and the metric g are:  
 
 

• For a (spin-averaged) nucleon, the most general covariant expression for Wμν(p,q) is: 
 
 
 

• The structure functions Wi can depend only on the Lorentz-invariants p2=M2, q2, and p.q  

gµ⌫ , pµp⌫ , qµq⌫ , pµq⌫ + p⌫qµ,

✏µ⌫⇢�p
⇢q�, pµq⌫ � p⌫qµ

Wµ⌫(p, q)= �gµ⌫W1+
pµp⌫

M2
W2�i✏µ⌫⇢�

p⇢q�
M2

W3

+
qµq⌫

M2
W4+

pµq⌫ + p⌫qµ

M2
W5+

pµq⌫ � p⌫qµ

M2
W6
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The hadronic tensor and structure functions

• Instead of p.q use ν or x as argument: Wi = Wi(ν,q2) or Wi=Wi(x,Q2)

• W6 doesn’t contribute to the cross section! No (lμ qν - lν qμ) in the leptonic tensor

• W4 and W5 terms are proportional to the lepton masses squared in the cross section 
since qμ Lμν ~ ml2.  Only place where they are relevant is charged current ντ-DIS. 

• Parity and Time reversal symmetry implies Wμν=Wνμ

• W3=0 and W6=0 for parity conserving currents (like the e.m. current)

Wµ⌫(p, q)= �gµ⌫W1+
pµp⌫

M2
W2�i✏µ⌫⇢�

p⇢q�
M2

W3

+
qµq⌫

M2
W4+

pµq⌫ + p⌫qµ

M2
W5+

pµq⌫ � p⌫qµ

M2
W6

d�|W6
= 0d�|W5

⇠ m2
ld�|W4

⇠ m2
l
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The hadronic tensor and structure functions

• Current conservation at the hadronic vertex requires qμWμν = qνWμν=0 implying 
 
 
 

• With current conservation+parity symmetry we are left with 2 independent sfs:  
 
 
 

Wµ⌫(p, q)= �gµ⌫W1+
pµp⌫

M2
W2�i✏µ⌫⇢�

p⇢q�
M2

W3

+
qµq⌫

M2
W4+

pµq⌫ + p⌫qµ

M2
W5+

pµq⌫ � p⌫qµ

M2
W6

d�|W6
= 0d�|W5

⇠ m2
ld�|W4

⇠ m2
l

W5 = �p · q
q2

W2 , W4 =

✓
p · q
q2

◆2

W2 +
M2

q2
W1

Wµ⌫ =

✓
�gµ⌫ +

qµq⌫

q2

◆
W1 +

1

M2

✓
pµ � p · q

q2
qµ

◆✓
p⌫ � p · q

q2
q⌫
◆
W2
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The cross section for inclusive ep→eX

l

p

l'γµ γν
l

p
pX

Q2 Q2

Jµ Jν

Lµν

Wµν

M M*A A*

Wµ⌫ = �gµ⌫? W1 +
1

M2
pµ?p

⌫
?W2

gµ⌫? = gµ⌫ � qµq⌫

q2
, pµ? = pµ � q · p

q2
qµ

d� =
1

F


e4

(q2)2
Lµ⌫W

µ⌫4⇡

�
d3l0

(2⇡)32E0

Lµ⌫ = 2[lµl
0
⌫ + l⌫ l

0
µ � gµ⌫(l · l0 �m2)]

Show that (m=0):

The DIS cross section in the nucleon rest frame reads (photon exchange, neglecting m):

Lµ⌫W
µ⌫ = 4(l · l0)W1 +

2

M2

⇥
2(p · l)(p · l0)�M2l · l0

⇤
W2

Giving in the nucleon rest frame:  
Lµ⌫W

µ⌫ = 4EE0 ⇥2 sin2(✓/2)W1 + cos2(✓/2)W2

⇤

d2�

dE0d⌦0 =
↵2
em

M4E2 sin4(✓/2)
[2W1(x,Q

2) sin2(✓/2) +W2(x,Q
2) cos2(✓/2)]



The cross section for inclusive ep→eX

The DIS cross section in the nucleon rest frame reads (photon exchange, neglecting m):

d2�

dE0d⌦0 =
↵2
em

M4E2 sin4(✓/2)
[2W1(x,Q

2) sin2(✓/2) +W2(x,Q
2) cos2(✓/2)]

It is customary to define  
“scaling” structure functions:

⇢
F1, F2, F3

�
=

⇢
W1,

Q2

2xM2
W2,

Q2

xM2
W3

�

Change of variables (E’,Ω’)→(x,y) and Wi →Fi:  

Show that
d2�

dxdy
=

2⇡My

1� y

d2�

dE0d⌦0

The DIS cross section in terms of Lorentz-invariants x, y (photon exchange, neglecting m):

d2�

dxdy
=

4⇡↵2
emS

Q4

⇥
xy2F1(x,Q

2) + (1� y � xyM2/S)F2(x,Q
2)
⇤

PDG’17, Eq. (19.1) 

PDG’17, Eq. (19.8) 25



Homework Problems
1. Show that the phase space for the outgoing lepton takes the following form  

in the variables x and y (without any approximation), where F is the flux and S=2 p.l:  
 
 

2. Derive the following general expression for the doubly differential cross section:  
 
 
 
 
 
 
(Note that the factor 4S2/F2 = 1+ O(m2/S * M2/S) and the mass term is negligibly small 
for incoming neutrinos, electrons, and muons even if the nucleon mass is taken into account.)

3. Show that the hadronic tensor in terms of the structure functions F1, F2 is given by:  

d3l0

(2⇡)32E0 =
2S2y

(4⇡)2F
dxdy

d2�

dxdy
=

2S2y

(4⇡)2F 2


e4

Q4
Lµ⌫W

µ⌫4⇡

�
=

4S2

F 2

2⇡↵2

Q4
y Lµ⌫W

µ⌫

Wµ⌫ = �gµ⌫? F1(x,Q
2) +

1

p · q p
µ
?p

⌫
?F2(x,Q

2)
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Homework Problems
Show that the hadronic tensor can be brought in the following forms:

• Use the integral representation for the delta-distribution:  

• The space-time translation of an operator in QM is generated by the 4-momentum operator:  

• Use the completeness relation:  

• The second term in the commutator leads to q+pX-p=0 violating mom. cons. q+p-pX=0!  

4⇡Wµ⌫ =
X

states X

Z
d�X(2⇡)4�(4)(p+ q � pX)

D
hN(p)|J†

⌫(0)|XihX|Jµ(0)|N(p)i
E

spin

=
X

states X

Z
d�X

Z
d4y eiqy

D
hN(p)|J†

⌫(y)|XihX|Jµ(0)|N(p)i
E

spin

=

Z
d4y eiqy

D
hN(p)|J†

⌫(y)Jµ(0)|N(p)i
E

spin

=

Z
d4y eiqy

D
hN(p)|[J†

⌫(y), Jµ(0)]|N(p)i
E

spin

(2⇡)4�(4)(p+ q � pX) =

Z
dy ei(p+q�pX)y =

Z
dy eiqy ei(p�pX)y

Ô(y) := e
iP̂ ·y

Ô(0)e�iP̂ ·y

X

states X

Z
d�X |XihX| = 1



III. OPE



Hadronic tensor

Optical theorem: Wµ⌫ / ImTµ⌫

/ Im

Tµ⌫ = i

Z
d4x eiqxhN |T [J†

µ(x)J⌫(0)]|Ni
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OPE

Tµ⌫ = i

Z
d4x eiqxhN |T [J†

µ(x)J⌫(0)]|Ni

30

•  is dominated by contributions near the light cone (light cone dominance of DIS): x2 ~ 0

• This is the starting point for the OPE (a sort of Taylor expansions of the product of currents):  
 
 

• Here  are different local operators with the same twist  
Definite spin n  symmetric traceless tensors with n indices

• The  are the Wilson coefficients. Naive dimensional counting:  
The leading term has lowest twist.  

Tμν

T[Jμ(x)Jν(0)] ∼
x2∼0 ∑

i,τ,n

ci,μ1⋯μn
τμν (x2)Oi,τ

μ1⋯μn
(0)

Oi,τ τ = dim − spin
↔

ci
τ ci

τ →
x2→0

( x2)τ−2dJ(ln(x2μ2)p

Note: 
a) independent of target
b) OPE implies factorization into  

Wilson coefficients and matrix elements 
of local operators

Lit: Cheng, Li, pp. 298
      Muta



OPE
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• After some manipulation ( , ) and in the  
approximation of keeping only the leading twist-2 operators one finds:  
 

•  is the reduced matrix element of the twist-2 operator and  is the  
(Fourier transformed) Wilson coefficient calculated using perturbation theory

•  

where abbreviates a sum over  permutations of the 
indices. 

eiqxxμ = − i∂/∂qμeiqx ∂/∂qμ = qμ∂/∂q2

Tμν =
∞

∑
k=1

(−gμνqμ1
qμ2

C2k
i1 + gμ

μ1
gν

μ2
Q2C2k

i2 − iϵμναβgαμ1
qβqμ2

C2k
i3

+
qμqν

Q2
qμ1

qμ2
C2k

i4 + (gμ
μ1

qνqμ2
± gν

μ1
qμqμ2

)C2k
i5,6)qμ3

. . . qμ2k

22k

Q4k
Ai

2kΠ
μ1⋯μ2k

A2k C2k
i (q2)

Πμ1...μ2k =
k

∑
j=0

(−1) j (2k − j)!
2 j(2k)!

{g . . . g}

j gμnμm′�s

{p . . . p}

(2k−2j) pμn′�s

(p2) j =
j=0

pμ1
⋯pμ2k

{g . . . g} {pA . . . pA} (2k)!/[2jj!(2k − 2j)!]



OPE
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• Covariant expansion of  similar to  (on page 19)  
 

• Neglecting target mass terms, things become much easier: j=0

• Working out the contractions and using the relation between  and  then relates Mellin 
moments of the structure functions to the reduced matrix elements:  
 

 ,  , ETC  

Tμν Wμν

Tμν(p, q) = − gμνT1 +
pμpν

M2
T2 − iϵμνρσ

pρqσ

M2
T̃3 +

qμqν

M2
T4 +

pμqν ± pνqμ

M2
T5,6

Wμν Tμν

∫
1

0
dxxn−1 1

x
F2(x, Q2) = Cn

i2Ai
n ∫

1

0
dxxn−1F1(x, Q2) = Cn

i1Ai
n



IV. Longitudinal and transverse structure 
functions
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Structure functions

• The sfs are non-perturbative objects which parameterize the 
structure of the target as ‘seen’ by virtual photons

• They are obtained with the help of projection operators:  
Piμν Wμν = Fi 

• The projectors are rank-2 tensors formed out of the 
independent momenta p, q and the metric g  
(similar to  Wμν)

• One can introduce transverse and longitudinal structure 
functions by contracting the hadronic tensor with the 
polarization vectors for transversely/longitudinally polarized 
virtual photons: FT, FL 

• It turns out that:  FT = 2xF1, F2 = FL + FT (neglecting M)

Wµ⌫ = �gµ⌫? F1(x,Q
2) +

1

p · q p
µ
?p

⌫
?F2(x,Q

2)

𝛾T* 𝛾T*

𝛾L* 𝛾L*

~FT

~FL
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Homework Problems

� = ±1 :✏±(q) = ⌥ 1p
2
(0, 1,±i, 0)

� = 0 :✏±(q) =
1p
�q2

(
p

⌫2 � q2, 0, 0, ⌫)

Chosing the z-axis along the three-momentum ~q, such that qµ = (q0, 0, 0, |~q|),
the polarisation vectors of spacelike photons with helicity � = 0,±1 can be
written as:

X

�=0,±1

(�1)�+1✏⇤µ(q)✏⌫(q) = �gµ⌫ +
qµq⌫

q2

1. Verify that q · ✏ = 0 for each �, and show the following completeness rela-
tion for a space like photon (q2 < 0):

2. Neglecting terms of order O(M2
/Q

2) show that:

a) ✏
⇤µ
0 (q)✏⌫0(q)Wµ⌫ = 1

2xFL with FL = F2 � 2xF1 = F2 � FT

b) 1
2 [✏

⇤µ
+ (q)✏⌫+(q) + ✏

⇤µ
� (q)✏⌫�(q))]Wµ⌫ = 1

2xFT with FT = 2xF1

It is useful to do the calculation in the nucleon rest frame p = (M, 0, 0, 0).

Halzen, Chap. 8.5
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V. CC and NC DIS
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Cross section for CC and NC DIS

l

p

l'γµ γν
l

p
pX

Q2 Q2

Jµ Jν

Lµν

Wµν

M M*A A*

B B’

d�BB0
⇠ LBB0

µ⌫ Wµ⌫
BB0

• B,B0 2 {�, Z} in the case of NC DIS

• B = B0 = W in the case of CC DIS

d2�

dxdy
=

X

B.B0

d2�BB0

dxdy

The differential cross section for DIS mediated by 
interfering gauge bosons B,B’ can be written as:

 Each of the terms dσBB’ can be calculated from the general expression:

��(Q
2) = 1

�Z(Q
2) =

g2

(2 cos ✓w)2e2
Q2

Q2 +M2
Z

=
GFp
2

M2
Z

2⇡↵

Q2

Q2 +M2
Z

�W (Q2) =
g2

(2
p
2)2e2

Q2

Q2 +M2
W

=
GFp
2

M2
W

4⇡↵

Q2

Q2 +M2
W

d2�BB0

dxdy
=

2S2y

(4⇡)2F 2


e4

Q4
�B�B0LBB0

µ⌫ Wµ⌫
BB04⇡

�

=
4S2

F 2

2⇡↵2

Q4
y�B�B0 LBB0

µ⌫ Wµ⌫
BB0

PDG’17, Eq. (19.2) 
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CC ντ-DIS 

Albright-Jarlskog relations:
(derived at LO, extended by Kretzer, Reno)

d2�⌫(⌫̄)

dx dy
=

G2
FMNE⌫

⇡(1 +Q2/M2
W )2

⇢
(y2x+

m2
⌧y

2E⌫MN
)FW±

1

+


(1� m2

⌧

4E2
⌫

)� (1 +
MNx

2E⌫
)y

�
FW±

2 ±

xy(1� y

2
)� m2

⌧y

4E⌫MN
)

�
FW±

3

+
m2

⌧ (m
2
⌧ +Q2)

4E2
⌫M

2
Nx

FW±

4 � m2
⌧

E⌫MN
FW±

5

�

Albright, Jarlskog’75
Paschos, Yu’98
Kretzer, Reno’02

F2 = 2xF5

F4 = 0 valid at LO [O(↵0
s)], MN = 0

(even for mc 6= 0)

valid at all orders in ↵s,
for MN = 0, mq = 0

Full NLO expressions (MN 6= 0,mc 6= 0): Kretzer, Reno’02



Sensitivity to F4 and F5

A. Di Crescenzo - DIS 2015 17

SENSITIVITY TO F4 AND F5

The SHiP experiment has the unique capability of being sensitive to F4 and F5!
!
F4 = F5 = 0  hypothesis ➙ increase of the ντ and ντ CC DIS cross sections!
                                         ➙ increase of the number of expected ντ and anti-ντ         !
                                             interactions!

F4 = F5 = 0
F4 = F5 = 0

SM prediction

ντ CC DIS cross-section ντ CC DIS cross-section 

SM prediction
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* Little research project: 

Work out the cross sections for NC and CC DIS 

(Find typos in the following expressions,  
Compare with expressions in PDF review)

Homework Problems
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Cross section for CC and NC DIS

LBB0

µ⌫ =
1

2

X

�

X

�0

ū(l,�)�B0

⌫ u(l0,�0)ū(l0,�0)�B
µ u(l,�)

=
1

2
Tr[(l/+m1)�

B0

⌫ ��(l0/+m2)�
B
µ ]

= 2L+[l
µl0⌫ + l⌫ l0µ � (l · l0)gµ⌫ ] + 4iRl,+✏µ⌫⇢�l

⇢l0�

Here �
B
µ = �µ(V B

e = AB
e �5), L± = V B

e V B0

e ±AB
e A

B0

e , Re,± = V B
e AB0

e ±V B0

e AB
e .

Show that for an incoming electron with general �µ(V �A�5) current the leptonic
tensor is given by (neglecting the lepton masses m1 and m2):

see Halzen&Martin
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Cross section for CC and NC DIS

The weak currents are not conserved (*) and parity is violated. Therefore, one
has to assume the most general structure for the hadronic tensor. In particular
one has to include a parity violating piece ⇠ i✏µ⌫⇢�p⇢q�:

(*) With Jµ
w = ū(p0)�µ(v � a�5)u(p) and using the Dirac equation one finds

qµJµ
w ⇠ a(m+m0) with p2 = m2, p02 = m02. Therefore qµLµ⌫ ⇠ leptonmass.

WBB0

µ⌫ = �gµ⌫F
BB0

1 (x,Q2) +
pµp⌫
p · q FBB0

2 (x,Q2)� i✏µ⌫⇢�
p⇢q�

2p · qF
BB0

3 (x,Q2)

+
qµq⌫
p · q F

BB0

4 (x,Q2) +
pµq⌫ + p⌫qµ

2p · q FBB0

5 (x,Q2) +
pµq⌫ � p⌫qµ

2p · q FBB0

6 (x,Q2)

The terms proportional to F4, F5 will be proportional to the lepton masses

squared and are usually neglected (F6 will not contribute to the cross section

at all). Of course, these terms have to be kept in the hadronic tensor when

projecting out structure functions.

convention: ε0123=+1
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Cross section for CC and NC DIS
We are now in a position to calculate the cross section:

Introducing generalized structure functions we can form the Neutral Current (NC) cross section:

d2�BB0

dxdy
=

4⇡↵2S

Q4
�B�

0
B

h
xy2L+F

BB0

1 + (1� y � xyM2/S)L+F
BB0

2 � y(1� y/2)2Rl,+xF
BB0

3

i

d2�NC

dxdy
=

4⇡↵2S

Q4

⇥
xy2FNC

1 + (1� y � xyM2/S)FNC
2 � y(1� y/2)xFNC

3

⇤

with
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VI. Bjorken scaling
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Expectations from elastic ep scattering

d�Mott

d⌦
=

↵2

4E2 sin4(✓/2)
cos2(✓/2)

Pointlike proton without spin, neglecting recoil:

Rutherford scattering

electron spin
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Expectations from elastic ep scattering

HEP Lecture 8 7

Electron-proton elastic scattering:

d�Mott

d⌦
=

↵2

4E2 sin4(✓/2)
cos2(✓/2)

Pointlike proton without spin, neglecting recoil:

d�

d⌦
=

d�Mott

d⌦

E0

E
[1 + 2⌧ tan2(✓/2)]

Pointlike proton with spin:

⌧ =
Q2

4M2
, Q2 = 4EE0 sin2(✓/2)
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Expectations from elastic ep scattering

HEP Lecture 8 7

Electron-proton elastic scattering:

d�Mott

d⌦
=

↵2

4E2 sin4(✓/2)
cos2(✓/2)

Pointlike proton without spin, neglecting recoil:

d�

d⌦
=

d�Mott

d⌦

E0

E


G2

E + ⌧G2
M

1 + ⌧
+ 2⌧G2

M tan2(✓/2)

�

Extended proton with spin (Rosenbluth formula):

d�

d⌦
=

d�Mott

d⌦

E0

E
[1 + 2⌧ tan2(✓/2)]

Pointlike proton with spin:

⌧ =
Q2

4M2
, Q2 = 4EE0 sin2(✓/2)

• Elastic form factor GE(Q2), GE(0)=1

• Magnetic form factor GM(Q2), GM(0)=μp=2.79  
μp=2.79: proton anomalous magnetic moment

GE(Q
2) =

GM (Q2)

µp
= (1 +Q2/a2)�2

a2 = 0.71 GeV2

Steeply falling form factors:
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Expectations from elastic ep scattering

d�Mott

d⌦
=

↵2

4E2 sin4(✓/2)
cos2(✓/2)

Pointlike proton without spin, neglecting recoil:

d�

d⌦
=

d�Mott

d⌦

E0

E


G2

E + ⌧G2
M

1 + ⌧
+ 2⌧G2

M tan2(✓/2)

�

Extended proton with spin (Rosenbluth formula):

d�

d⌦
=

d�Mott

d⌦

E0

E
[1 + 2⌧ tan2(✓/2)]

Pointlike proton with spin:

⌧ =
Q2

4M2
, Q2 = 4EE0 sin2(✓/2)

• Elastic form factor GE(Q2), GE(0)=1

• Magnetic form factor GM(Q2), GM(0)=μp=2.79  
μp=2.79: proton anomalous magnetic moment

GE(Q
2) =

GM (Q2)

µp
= (1 +Q2/a2)�2

a2 = 0.71 GeV2

Steeply falling form factors:

Note that the idea of a point-like strongly 
interacting particle is rather academic!

Due to quantum corrections we have to 
generalize the ‘point-like current’ by the most 
general current respecting all symmetries of the 
interaction and introduce form factors.

This is even the case in QED. However, here the
Dirac and Pauli form factors are calculable in
perturbation theory.  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What do we expect for a point-like particle?

d�Mott

d⌦
=

↵2

4E2 sin4(✓/2)
cos2(✓/2)

Point-like proton without spin, neglecting recoil:

d�

d⌦
=

d�Mott

d⌦

E0

E
[1 + 2⌧ tan2(✓/2)]

Point-like proton/muon with spin:

  

What do we expect for a point like particle

Dimensional considerations

Structure Function

Fred Olness,  
CTEQ school 2012
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Expectations from elastic ep scattering

Fig. 23. Summary of results on nuclear form factors presented by the Stanford group at the
1965 “International Symposium on Electron and Photon Interactions at High Energies”. (A
momentum transfer of 1 GeV2 is equivalent to 26 Fermis-2.)

increasing data was a powerful way to check on the progress of the experi-
ments (Fig. 22).

In the summer of 1966 there was a call for proposals to use the beam at
SLAC. The accelerator was nearing completion, and some early tests of the
accelerator with beam were being done with considerable success. Although
the initial programs in End Station A were built into the design of the
facility, it was now necessary to parcel out beam time and arrange the
sequence of experiments for the first year of operation. The Cal Tech-MIT-
SLAC collaboration prepared a proposal that consisted of three parts:

a. Elastic electron-proton scattering measurements (8 GeV spectrometer)
b. Inelastic electron-protron scattering measurements (20 GeV spectrom-

eter)
c. Comparison of positron and electron scattering cross sections (8 GeV

spectrometer)
It is clear from the proposal that the elastic experiment was the focus of

interest at this juncture. “We expect that most members of the groups in
the collaboration will be involved in the e-p elastic scattering experiment,
and that the other experiments will be done by subgroups.”

During the construction of SLAC and the experimental facilities a lot of
progress had been made on the measurements of nucleon form factors at
other laboratories. The program at HEPL had continued to produce a great

The results formed the prejudice that the proton was a soft “mushy” extended object,
possibly with a hard core surrounded by a cloud of mesons, mainly pions.

The SLAC-MIT team saw its objective in searching for the hard core of the proton.
First DIS experiments (>=1967).
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Bjorken scaling

Early data on DIS from the SLAC-MIT experiment
[PRL23(1969)935]

d�

d⌦
=

d�Mott

d⌦

E0

E


G2

E + ⌧G2
M

1 + ⌧
+ 2⌧G2

M tan2(✓/2)

�

Elastic scattering (Rosenbluth formula):

The DIS cross section resembles the 
elastic one:

d�DIS ⇠ d�Mott[W2 + 2W1 tan
2(✓/2)]

The form factors had been know to fall 
rapidly as a function of Q2. 

Therefore, the general expectation for 
σDIS before its measurement was that it 
also would be a fast falling function of Q2.

σDIS depends only  
mildly on Q2
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Bjorken scaling

Scaling hypothesis (Bjorken 1968):

In the limit Q2→∞, ν→∞, such that x=Q2/(2Mν) is fixed (‘Bjorken limit’)
the structure functions Fi(x,Q2) are insensitive to Q2: Fi=Fi(x)

This behaviour is called scaling and x is called the scaling variable
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Bjorken scaling

Scaling hypothesis (Bjorken 1968):

In the limit Q2→∞, ν→∞, such that x=Q2/(2Mν) is fixed (‘Bjorken limit’)
the structure functions Fi(x,Q2) are insensitive to Q2: Fi=Fi(x)

This behaviour is called scaling and x is called the scaling variable

Scaling implies that the nucleon appears as a collection of point-like  
constituents when probed at very high energies (Q2 large). 

The possible existence of such point-like constituents was also proposed by 
Feynman from a different theoretical perspective and he gave them the name 
‘partons’.
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Structure of the proton

Fred Olness,  
CTEQ school 2012

  

Structure of the Proton

L of order of the 

proton mass scale

11
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Bjorken scaling for F2

  

The Scaling of the Proton Structure Function

Data is (relatively) 
independent of energy

Scaling 
Violations 
observed at 
extreme x 

values

Varies with energy

Varies with energy

12
Fred Olness,  
CTEQ school 2012

x~0.2

large x

small x
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Bjorken scaling for FL
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Figure 3: FL and F2 at 6 values of Q2 as a function of x. The points represent the
ZEUS data for FL (•) and F2 (!), respectively. The error bars on the data represent
the combined statistical and systematic uncertainties. The error bars on F2 are
smaller than the symbols. A further ±2.5% correlated normalisation uncertainty is
not included. The DGLAP-predictions for FL and F2 using the ZEUS-JETS PDFs
are also shown. The bands indicate the uncertainty in the predictions.
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I. INTRODUCTION

A. Motivation

The production of heavy quarks in high energy pro-
cesses has become an increasingly important subject of
study both theoretically and experimentally. The the-
ory of heavy quark production in perturbative Quan-
tum Chromodynamics (pQCD) is more challenging than
that of light parton (jet) production because of the new
physics issues brought about by the additional heavy
quark mass scale. The correct theory must properly take
into account the changing role of the heavy quark over
the full kinematic range of the relevant process from the
threshold region (where the quark behaves like a typical
“heavy particle”) to the asymptotic region (where the
same quark behaves effectively like a parton, similar to
the well known light quarks {u, d, s}).

With the ever-increasing precision of experimental
data and the progression of theoretical calculations and
parton distribution function (PDF) evolution to next-to-
next-to-leading order (NNLO) of QCD there is a clear
need to formulate and also implement the heavy quark
schemes at this order and beyond. The most important
case is arguably the heavy quark treatment in inclu-
sive deep-inelastic scattering (DIS) since the very pre-
cise HERA data for DIS structure functions and cross
sections form the backbone of any modern global anal-
ysis of PDFs. Here, the heavy quarks contribute up to
30% or 40% to the structure functions at small momen-
tum fractions x. Extending the heavy quark schemes to
higher orders is therefore necessary for extracting precise
PDFs and hence for precise predictions of observables at
the LHC. However, we would like to also stress the theo-
retical importance of having a general pQCD framework
including heavy quarks which is valid to all orders in per-
turbation theory over a wide range of hard energy scales
and which is also applicable to other observables than
inclusive DIS in a straightforward manner.

An example, where higher order corrections are par-
ticularly important is the structure function FL in DIS.
The leading order (O(α0

S)) contribution to this structure
function vanishes for massless quarks due to helicity con-
servation (Callan-Gross relation). This has several con-
sequences:

• FL is useful for constraining the gluon PDF via the
dominant subprocess γ∗g → qq̄.

• The heavy quark mass effects of order O(m
2

Q2 ) are

relatively more pronounced.1

1 Similar considerations also hold for target mass corrections
(TMC) and higher twist terms. We focus here mainly on the
kinematic region x < 0.1 where TMC are small [1]. An inclu-
sion of higher twist terms is beyond the scope of this study.
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Figure 1: FL vs. Q from combined HERA-I inclusive
deep inelastic cross sections measured by the H1 and

ZEUS collaborations. Figure taken from Ref. [2].

• Since the first non-vanishing contribution to FL

is next-to-leading order (up to mass effects), the
NNLO and N3LO corrections are more important
than for F2.

In Fig. 1 we show a comparison of different theoretical
calculations of FL with preliminary HERA data [2]. As
can be seen, in particular at small Q2 (i.e. small x), there
are considerable differences between the predictions.2

The purpose of this paper is to calculate the leading
twist neutral current DIS structure functions F2 and FL

in the ACOT factorization scheme up to order O(α3
S)

(N3LO) and to estimate the error due to approximating

the heavy quark mass terms O(α2
S×m2

Q2 ) and O(α3
S×m2

Q2 )
in the higher order corrections. The results of this study
form the basis for using the ACOT scheme in NNLO
global analyses and for future comparisons with precision
data for DIS structure functions.

B. Outline of Paper

The rest of this paper is organized as follows. In Sec.
II we review theoretical approaches to include heavy fla-
vors in QCD calculations. Particular emphasis is put
on the ACOT scheme which is the minimal extension
of the MS scheme in the sense that the observables in
the ACOT scheme reduce to the ones in the MS scheme
in the limit m → 0 without any finite renormalizations.
In this discussion we explicitly distinguish between the
heavy quark/heavy meson mass entering the final state
phase space which we will call “phase space mass” and
the heavy quark mass entering the dynamics of the short

2 An updated analysis of the H1 measurements extending down
to even lower Q2 values has been published in Ref. [3], and a
combined analysis with ZEUS is in progress.

ZEUS collab, arXiv:0904.1092
The HERA combined measurement of FL 
is compatible with scaling 

We note that FL is quite smaller than F2.
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The End of Lecture 1
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