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» Historical introduction:

 Drell-Yan production as a testing ground for the Parton Model.
* The advent of QCD:

 the need for a factorisation theorem,

* higher-order corrections and the limitations of fixed-order calculations.
* Resummation:

* the origin of large logarithms,

» resumming the leading logarithms,

e the Collins-Soper-Sterman formalism and TMD factorisation,

* (transverse non-perturbative effects).



The Parton Model was born as a leap of faith...
Excerpt from R. P. Feynman [Phys. Rev. Lett. 23, 1415 (1969)]:

VERY HIGH-ENERGY COLLISIONS OF HADRONS

Richard P. Feynman
California Institute of Technology, Pasadena, California
(Received 20 October 1969)

I have
difficulty in writing this note because it is not in
the nature of a deductive paper, but is the result
of an induction. I am more sure of the conclu-
sions than of any single argument which suggest-
ed them to me for they have an internal consis-
tency which surprises me and exceeds the con-
sistency of my deductive arguments which hinted
at their existence.

The Parton Model 1s based on an intuition that even Richard Feynman could not
give a solid argument to (an enlightening reading of only 2 pages that I would
suggest to anyone).

Core of the Parton Model: hadrons are made of partons, free elementary
particles that undergo an instantaneous interaction with a projectile carrying a
large energy. Then one can neglect binding effects during the interaction and treat
the collision as between free particles.



Drell-Yan in the Parton Model

One year later Drell and Yan applied the Parton Model to the inclusive production

of massive lepton pairs 1n hadron-hadron collision (called the Drell-Yan process
ever since) [Phys. Rev. Lett. 25,316 (1970)]:

(: invariant mass of the lepton pair

\/E: collision center-of-mass energy

PP s /=0T X

The result of their calculation assuming photon exchange was:

dO‘PM

PP—+X _ Ao, 2 body 3 Q’
dQ2 B SSQZ(NC) Eq:eq /Q?/s ?fQ(y)fq (_)

SY

As a pre-QCD result, the colour factor N. was not included but the kinematic fall-
off with 02 was predicted.

The functions fq@ are the parton distribution functions (PDFs) that in this

context can be interpreted as probability distribution functions. .



Drell-Yan in the Parton Model

The Parton Model was tested inp + U — u™ + u~ + X at BNL in 1970.

Parton Model “[...] in rough shape agreement with the data

“Observation of massive muon pairs in hadron collisions”
(1970) 1523-1526]).
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Ilamn

The advent of QCD

ot going to (re)introduce you QCD!

All I want to stress here 1s that Parton Model and QCD are fundamentally different:

* the former 1s a (semi)classical model,

* the latter 1s a sound quantum-field theory that assumes a given matter content
(quarks) and a non-abelian gauge symmetry (SU(3)).

Yet, when 1t comes to Drell-Yan, the Parton Model can be regarded as the skeleton
of QCD. How comes?

1. QC
2. the

D 1s renormaliseable in four dimensions (dimensionless coupling),
Drell-Yan cross section in QCD enjoys leading-power factorisation of low-

and high-energy contributions:

oc=0Qf

“Byproduct” of factorisation: operator definition of PDFs f.

Moreover, the non-abelian nature of QCD 1s responsible for the asymptotic
freedom of the coupling («,) that ultimately enables us to compute the high-energy

contribution 6 1n perturbation theory. In other words, QCD allows us to

systematically improve on the Parton Model.
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Factorisation in Drell-Yan

To understand how QCD “contains” the Parton Model, let us sketch the main steps
of leading-power factorisation in Drell-Yan production:

PA A

PB



Factorisation in Drell-Yan

To understand how QCD “contains” the Parton Model, let us sketch the main steps
of leading-power factorisation in Drell-Yan production:

PA A

Hard real radiation

/

Multidimensional q

momentum space
'
@,

generated by internal
loops integrated over
C
C

N

soft and collinear f_
radiation

PB



Factorisation in Drell-Yan

Apply Libby-Sterman power counting to the scattering amplitude to identify the
large-Q asymptote [ Phys.Rev.D 18 (1978) 4737].

The well-known result (1n a covariant gauge) 1s:

Collinear modes

PA

PB

Anticollinear modes
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Factorisation in Drell-Yan

Apply Libby-Sterman power counting to the scattering amplitude to identify the
large-Q asymptote [ Phys.Rev.D 18 (1978) 4737].

The well-known result (1n a covariant gauge) 1s:

s

1

()

7 \ q

| Only one collinear quark
4 S > (or gluon) connects
. C Hto Aand B
- O

B
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Factorisation in Drell-Yan

Apply Libby-Sterman power counting to the scattering amplitude to identify the
large-Q asymptote [ Phys.Rev.D 18 (1978) 4737].

The well-known result (1n a covariant gauge) 1s:

PA

Any number of gluons Wlth
scalar polarisation
can connect H to A and B.

PB
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Factorisation in Drell-Yan

Apply Libby-Sterman power counting to the scattering amplitude to identify the
large-Q asymptote [ Phys.Rev.D 18 (1978) 4737].

The well-known result (1n a covariant gauge) 1s:

PA

No connections
between H and S

PB
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Factorisation in Drell-Yan

Apply Libby-Sterman power counting to the scattering amplitude to identify the
large-Q asymptote [ Phys.Rev.D 18 (1978) 4737].

The well-known result (1n a covariant gauge) 1s:

PA

Any number of soft gluons ob
can connect Sto A and B ™S\ /™

PB
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Factorisation in Drell-Yan

Apply Libby-Sterman power counting to the scattering amplitude to identify the
large-Q asymptote [ Phys.Rev.D 18 (1978) 4737].

The well-known result (1n a covariant gauge) 1s:

A
[ {
()
4 q
Remnant interactions
N ' (Glauber modes) cancel:
j highly non-trivial step
- O
B g
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Factorisation in Drell-Yan

In brief, factorisation 1s finally achieved by:

 using Grammer-Yennie-like approximations for each soft/collinear gluon with
momentum k to write, for example:
1

L. .. VAI/... N Q.. C A

o this allows one to use Ward identities and introduces Wilson lines.

A recursive application of this argument leads to factorisation of the amplitude:

pA

PB

I

A~H-A-B-S
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Factorisation in Drell-Yan

Upon squaring, summing over the unobserved radiation and integrating
over loop momenta, factorisation leads to the operator definition of:

e gauge 1nvariant jet (or beam) function:

e and soft function:

SO ey o [dk*dk™ L,

17



Factorisation in Drell-Yan

It gr ~ Q> Agep (gr K Q later), one can neglect the partonic traverse momenta kt’s
in the hard function A (collinear factorisation).

The integration over the kr’s 1s then short-circuited over the jet and soft functions:
1. the contributions from the soft function cancels,

2. we are left with the Ar-integrated jet function that ultimately defines the PDF:

fON2) o [dk~d> >k 1 |

The gauge-invariant definition of the quark PDF in terms of the field yw(x) reads:

e X
FO) = [ Beemm ™ (0,07, 00) 5 Wiy, 010(0.0,01) | )

2T

Gauge invariance guaranteed by the the Wilson line (or gauge link):

Y
Wiy~ ,0] = Pexp z'gta/ dr~ AT (0,27,07)
0

A similar operator definition exists for the gluon PDF. "



Factorisation in Drell-Yan

After integrating over rapidity and transverse momentum of the lepton pair, the net
result of QCD collinear factorisation for Drell-Yan 1s:

~QCD )

47 o / dt i /1 <Q2>
PP—)KE—I—X em (0) (0)

= g H;;i(t, as(Q )

dQ? - 3s5Q2N, Q2/s 1 (% as(Q)) Q2/st U RN, )i syt

1,7=9,9,9

where ﬁij 1s the so-called partonic cross section that, being only sensitive to large
scales, is computable perturbatively and at NLO is:

Hij(t, as(Q)) = €28;4056(1 — t) + Z o’

Truncating to leading order one finds back the Parton Model result!

Unfortunately, this 1s not quite as “simple” as that if one wants to go beyond LO.

Assuming to work in massless QCD in 4 dimensions (a common configuration):

ﬁl-j beyond LO is affected by collinear divergences (4t of the radiation — 0) ,

2. the operator definition of PDF fl.(o) evaluates to zero: UV and IR divergences cancel.
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Factorisation in Drell-Yan

At one loop and in 4 — 2¢ dimensions the situation can be exemplified as follows:

1
— pole for k7 — 0

do!1! % ( 1 %) . €IR
X Olg + [ — — + finite
dQ)? R €UV §IR !

o P —— pole for k7 — oo
N~ €UV

H £(0) £(0)

Therefore the IR (collinear) divergences cancel between A and the PDF leaving only
the UV divergence of the PDFs.

This UV divergence can be removed defining appropriate renormalisation constants:

O —~
fz( )(:E) — > J[Zij (337 (XS(M), ED@) fj (337 :u)
J
The MS renormalisation constants contain the

UV divergences of PDFs and are computable
order by order in perturbation theory:

" 7,7 (@)

Zii(x,as(pn),€) =0(1 —x) —I—Zoz Z

k=1

E
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Factorisation in Drell-Yan

At one loop and in 4 — 2¢ @

do 1]
d()?

X (g

_J/

H £(0) £(0)

imensions the situation can be exemplified as follows:

1 .
iﬁ T (— - %) | finite
R €UV IR
N~

1
— pole for k7 — 0
€IR

1
—— pole for kr — o0
€UV

Therefore the IR (collinear) divergences cancel between A and the PDF leaving only
the UV divergence of the PDFs.

This UV divergence can be removed defining appropriate renormalisation constants:

(0)

ZZ” (x, as (b

6) ®[fj (aja IUD

Renormalised PDF
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Factorisation in Drell-Yan

At one loop and in 4 — 2¢ @

do 1]
d()?

X (g

_J/

H £(0) £(0)

imensions the situation can be exemplified as follows:

1 :
S (- %) + finite
R cuv IR
N~

1
— pole for k7 — 0
€IR

1
—— pole for kr — o0
€UV

Therefore the IR (collinear) divergences cancel between A and the PDF leaving only
the UV divergence of the PDFs.

This UV divergence can be removed defining appropriate renormalisation constants:

ZZZJ $ oF @)76 ®f] Qf,@

The scale u is introduced as usual
to keep the coupling dimensionless.
It 1s often referred to factorisation

scale but it 1s in fact a standard

f(O)

renormalisation scale
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Factorisation in Drell-Yan

At one loop and in 4 — 2¢ dimensions the situation can be exemplified as follows:

1
— pole for k7 — 0

do 1] 1 €IR
dzocozs %%—(——%)—kﬁmte .
Q JIR Y IR —— pole for kr — o0

\ - _J/
cuv

| H £(0) £(0) _

Therefore the IR (collinear) divergences cancel between A and the PDF leaving only
the UV divergence of the PDFs.

This UV divergence can be removed defining appropriate renormalisation constants:

f(O) ZZZJ x as )@fj(aj,,U)

Finally, exploiting the 1ndependence of f, O from u, one can derive a RGE:

dfz - Iu 1 — de
dln p? ZP” z,05(p) @ fiz, 1) with Py = _Zz'k1® J

the famous DGLAP equatlon The evolution kernels P;; are finite perturbative objects:

—|—1
Pi(z, as(p E al (z)
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Factorisation in Drell-Yan

After the cancellation of the IR divergencies and the renormalisation of the PDFs, the
factorised Drell-Yan cross section in QCD 1s finite and reads:

dOQCD _ ATt o2 1 1 2 \ )
PP—/ii4+ X L Waem / dtH (t o Q :u) / dyf (Q )

— — L1l s Lbg " —1\Y, U f — M
dQ? 3sQ* N, . Z Qs t (@) Q) Jo2/st Y (1)1 syt ),

1,1=4,9,9

[\

Renormalised PDFs
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Factorisation in Drell-Yan

After the cancellation of the IR divergences and the renormalisation of the PDFs, the

factorised Drell-Yan cross section in QCD 1s finite and reads:
QCD
dUPP—>eZ+X _ drag,, Z / dtr t o / _f y, 1) f <Q2 M)
dQ2 38Q2N ii—q.G. QQ/S L S QQ/St ’ Syt7

Subtracted partonic cross sections
.H t S Od H g
( . ) Z Z (Q)

Despite the scale ¢ 1s in principle arbitrary, in order for the series in a, to be

convergent, the truncation to fixed order of H; requires all the coefficients of the
expansion be of the same order. A necessary condition for this to happen 1is:

Natural factorisation-scale choice.

P < ~ Variations by moderate factors give an
In (@) ~1 o= @ ~ estimate of higher-order corrections.

While the x dependence of PDFs 1s not perturbatively accessible, their 4 dependence 1s
governed by the DGLAP equation.

Once PDFs at some reference scale y, are known, that can be evolved to any other scale.
25



Higher-order corrections in Drell-Yan

Here 1s what happens when perturbative corrections are included into the partonic cross
section H;;.

Crr[1,0] . 72[2,0] . £7[3,0]
1.2 T4, T4, T4,
11 NLO =— NNLO =-— N3LO
S [ ]
2 1.
B
509 LHC 13TeV
PDF4LHC15_nnlo_mc
08 | PP - y"+X (efe +X)
) Heent =Q [Phys.Rev.Lett. 125 (2020) 17, 172001]
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Q [GeV]
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1.025 BBk o NLO — NNLO — N3LO
Q i ,ucent.zQ
= —
2 1 . —
S
© 0975
0.95
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Higher-order corrections in Drell-Yan

The fully inclusive cross section do/dQ? is theoretically interesting but would it be
possible to go more differential?

Sure, for example collinear factorisation works just as well for the rapidity
distribution y of the lepton pair:

“2m () 2 ()
y = —In = —In| —
2 E_q,z 2 q
do 3P

4o / dy1 ! dy (az X ,u>
PP—00+X em 1 2 1 2
— —GZ _7_7058@7_ f'lzy7ILL fy7ILL
dQ2dy  3sQZ2N, ”zq:qg Q/sev Y1 JQ/\se-v Y2 "\ ye Q) @ (W1 10542, 1)

Also here the subtracted partonic cross sections admit a perturbative expansion:

Gij (yl,yz,ozs(Q), g) = e30iq070(1=y1)d(1=y2)+ ) al(Q ZG[n Mo " (%)
n=1

The cancellation of IR divergences between partonic cross sections and PDFs takes
place exactly like in the y-inclusive case and logs of u/u, are resummed via DGLAP.

27



Higher-order corrections in Drell-Yan

Here 1s what happens when perturbative corrections are included into the partonic cross

section Gy,

d°c/dM/dY [pb/GeV]

80

60
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20

| | | | | | I | | | |

| | | I I

I | | I

pp - (Z,77)+X
| | | | | | | | | | | | |
[1,0]
el
NNLO 1 G
Lo GoY
1]
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-2 0 2
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[GeV]

[

1/6 do/dp

MC / Data

qr distribution at fixed order

So far so good! Can we try to be even bolder and use collinear factorisation for the
differential cross section do/dQ*dydq,? Why not!

10

0!

107 E
10°°
107
107°
10°°
107’
10°°

m‘lll

ATLAS 0O ~ M, ~ 90 GeV
Vs=13 TeV, 36.1 fb’’

® Data

—®— Sherpa v2.2.1
= NNLOjet
—— NNLOjet + NLO EWK

T T T

1.15

1.1
1.05
1
0.95

0.9
0.85
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http://dx.doi.org/10.1140/epjc/s10052-020-8001-z

qr distribution at fixed order

So far so good! Can we try to be even bolder and use collinear factorisation for the
differential cross section do/dQ*dydq,? Why not!

GeV

R

10

107"

=F107?
10°°
107
107°
10°°
107’

1/0 do/d

MC / Data

ATLAS QO ~M, ~90 GeV ® Data
Vs=13 TeV, 36.1 b’ —8— Sherpa v2.2.1
~— NNLOjet
—— NNLOjet + NLO EWK
NNLO accurate predictions
and yet something starts going
wrong at relatively low p¥
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qr distribution at fixed order

We derived collinear factorisation by requiring gy ~ Q > Agcp. No wonder this

formalism breaks down 1if g < (0. An analysis of the cross section reveals that for
gr # 0 the NPLO collinear calculation has the following structure:

QCD p+1 2n—1

g _ 2
I —1 O
dQ2dydq? qT<<@ZO‘ Z . <qT> i <Q )

31



qr distribution at fixed order

We derived collinear factorisation by requiring gy ~ Q > Agep, no wonder it breaks
down if g, < Q. Indeed, for g; # 0 the N’LO calculation has the following structure:

dO'QCD B p+1 2n—1 Q q2
PP—0l+X nk] L T
Il — O =
1Q>dydq? qT<<@ZO‘ ) 2 ( >+ <Q2>
No O(1) contrlbutlon.

It only appears at g, = 0,
i.e. 1t 1s proportional to o(gy).
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qr distribution at fixed order

We derived collinear factorisation by requiring gy ~ Q > Agep, no wonder it breaks
down if g, < Q. Indeed, for g; # 0 the N’LO calculation has the following structure:

AR _ p+1 2n—1 0 .2
PP—00+X [n,k]
T! @,
dQ*dydq? qT%i@;o‘ ) 2 [ <qT> i <Q2>

k=0

Non-integrable singularities at g, = 0.
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qr distribution at fixed order

We derived collinear factorisation by requiring gy ~ Q > Agep, no wonder it breaks
down if g, < Q. Indeed, for g; # 0 the N’LO calculation has the following structure:

daggD 00+X . = 1 Q q2

— 00+ T
g oz g Tkl _—pk [ = + O <—>

dQ2dyqu qT<<Q (Q) — qT <QT> ()2

Up to two logs per power of o
(double logs)
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qr distribution at fixed order

We derived collinear factorisation by requiring gy ~ Q > Agep, no wonder it breaks
down if g, < Q. Indeed, for g; # 0 the N’LO calculation has the following structure:

PP—/ii+X n,k] — T
I “)Ho (=
dQ?dydq7 qT<<Q Z o Z <QT> +[ <Q2>j

Power corrections
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qr distribution at fixed order

We derived collinear factorisation by requiring gy ~ Q > Agep, no wonder it breaks
down if g, < Q. Indeed, for g; # 0 the N’LO calculation has the following structure:

O.QCD B p+1 2n—1 Q 2
PP—0l+X n, k]
a, Tkl — ln + O
dQ?dydqs. ar <<Q Z Z <QT > <Q2 )

For gr < (Q any truncation of this series 1s inaccurate because the logs enhance higher-
order corrections and spoils the convergence. In fact, any truncation diverges at g, = 0.

36



do
dydQdqr

qr distribution at fixed order

\/§:13TeV,Q:MZ,y:O
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qr distribution at fixed order
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qr distribution at fixed order

We derived collinear factorisation by requiring gy ~ Q > Agep, no wonder it breaks
down if g, < Q. Indeed, for g; # 0 the N’LO calculation has the following structure:

O.QCD B p+1 2n—1 Q 2
PP—0l+X n, k]
a, Tkl — ln + O
dQ?dydqs. ar <<Q Z Z <QT > <Q2 )

For g; < Q any truncation of this series 1s inaccurate because the logs enhance higher-
order corrections and spoils the convergence. In fact, any truncation diverges at g, = 0.

In addition, this cross section is not even integrable at g = 0, this means that:

/ A2 —EPDEX _ “ppPosiiyx
0 dQ*dydqy dQ*dy
Something 1s missing ( ).

1. Do we understand the origin of these logs?

2. Can we resum them to all orders in a,?
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Resummation of the g, distribution

A classical reference that discusses the origin of the small-g; logs 1s [Nucl.Phys.B 154
(1979) 4277-440] by G. Paris1 and R. Petronzio.

In order to avoid the complications of QCD being non-abelian, they considered the g;
distribution of a muon pair produced in the purely QED process ee™ — u*u~ + ny via
photon exchange with #n photons emitted by eTe™ (not u ™).

e M+

40



Resummation of the g, distribution

In order to have a g of the muon pair different from zero, we need to emit at least one
additional photon against which the muon pair recoils, i.e. ete™ — u*u~ + 7, hence the
cross sections starts at O(a). 4

q o
e i /\ . e
,\/\/“U

Y k

Since kr =¢qgp, if g < Q (and Q < \/E ) the additional photon with
momentum £ has to be soft (k¥ < Q).

In this case the g;~differential cross section at small g, but g # O evaluates to:

@ (111(622/61%)

2
s dr

- less singular terms)

where o, is the total cross section fore™e™ - u "y~ + X
41



Resummation of the g, distribution

[t 1s easy to extend the result to g = 0 by requiring:

Q° do do In(Q?/q%)
dg>— = 09(Q) = — =00(Q) |6(¢7) + « ( L ) + subleading
| gt =@ = 5 =o0l@) o) )

where: - v(kr) -

Q> Q>
/0 dg2.f (qr) [H (qr)]4 = / dg2.H (qr)(f(ar) — (1)

Now let us consider the cumulant cross section:

1 k%dea 1 QQdeO' 1 Q2d2d0
dr V= — — dr V= — — dr 5o
Ydg o0 o Tded oo Sy T dgd

00 0

Q* 2
2 a . o (@

2
T

(k)

where we have neglected subdominant terms. Notice that 2(k;) is engineered such that:

d 1 do

— (k) =
dk2. (br) oo dk2.

What happens if there are n soft photons in the final state?

42



Resummation of the g, distribution

It 1s “well known” that soft photons factorise in QED (eikonal approximation):

1 2 n 1 2

S iak S+ S5 SRR S S

(Fortunately, this remains true in QCD for the emission of soft gluons but it i1s much
harder to prove (see e.g. Nucl. Phys. B 327 (1989) 323-352)).

Therefore, the cumulant cross section for any number of soft-gluon emissions is:

k3 2 k3

T Qv T

Nkr) = 1+ 04/ dq%,ll/(QT,l) + ?/ dQ%,1dQ%,2V(QT,1)V(QT,2) ..
0 0
b (- Q? Sudakov
— da? 7
nZO n/ H/ I ari) = S(p[ o (k2 )j form factor
Finally, soft gluon emissions exponentiate such that the resummed cross section reads:

1 do  d o In(Q2/k2) Q?
= % S(kp) = 2
T T V)

T'his result, that works also in QCD, 1s the Double-Leading-Log Approximation (DLLA)
T'he result 1s that the g,~differential cross section, does not diverge anymore for g — 0.
In fact, 1t tends to zero exponentially in this limat. 43




do

dk?2

Resummation of the g, distribution

— DLLA
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Resummation of the g, distribution
Unfortunately, the DLLA is too suppressed for g, — 0. Experimentally one observes:

do tant
> constan
dq{%qT—)O
— NPLL
¢ E605 data |
do
FEF— ~
dyqu
R 02 [ VE = 388 GeV N _-
0 10.5 GeV < Q < 11.5 GeV 8 -
9125\

0.00 0.25

050  0.75 1.00 1.25
qr |GeV]

1.50

1.75  2.00

What’s wrong with DLLA? 45



Resummation of the g, distribution

Let us examine DLLA more 1n depth:

« emitted soft photons are all independent.

e In this configuration, the only possibility to get g = O 1s to veto all photons. Clearly,
the probability of emitting no photons 1s zero and so is the cross section.

 But in reality, if more than a single photon 1s emitted, it is possible to obtain g = 0
through vectorial sum of transverse momenta:

 Therefore, DLLA overly constraints the phase space of emitted gluons around g, = 0.

 For g; — O the leading contribution vanishes and subleading terms become important.

e In fact, the main shortcoming of DLLA 1s that it neglects momentum conservation.
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Resummation of the g, distribution

Let us enforce momentum conservation on the soft gluon emissions:

©. @)

an n n
Y(kr) = Z s /5<2)(kT — Z qr.k) H dq%,ku(qT,k) = and now what?
n=0 k=1 k=1

The o-function seemingly spoils the exponentiation because 1t entangles all momenta.

Let us consider the Fourier representation of the o-function:
52 (kr — i: ark) = / &b e~ kTP ﬁ e'dT kb
= (2m)? o

plugged 1nto X, this gives:

= a" [ d’b _, T S
M(kr) = ZF/(QT‘.)QG kaH/dqizF,ke A bV(C]T,k)
n=0 k=1 ~ _
v(b)
00 o’ dzb e~ . d2b e B
— Zm/@w)f P (b)) :/(277)26 “7Pexp [ar/(b)]

n=0

Soft gluon emissions with momentum conservation exponentiate in b space (often called

impact parameter space) allowing to resum them.
do

Momentum conservation ensures that 5 > constant
dq7 ar—0 47




Resummation of the g, distribution

A full-fledged extension of this formalism to Drell-Yan in QCD was carried out by
Collins, Soper and Sterman [Nucl. Phys. B250, 199 (1985)]:

CSS >
A0 o it x _ 2m gy, Z Hap (o / dbbJo(bqr)
dQ2dydqg? SSQQN 0 b—a7 vl 0
d X
. / W Gt (20

X / Cb] y27a8(:ub))f <%7ﬂb)

X exp <(—/:22 d—”; [A(ozs(u))ln (Qj) - B(ozs(#))} >

2 [ 7

\

=+ Y(Qa Y, QT) bo 2~ VE

Functions, 4, B, C, H are all perturbative. T Vs 4



Resummation of the g, distribution

A full-fledged extension of this formalism to Drell-Yan in QCD was carried out by
Collins, Soper and Sterman [Nucl. Phys. B250, 199 (1985)]:

PP— 00+ X T Yem
— Hap (o dbbJo (b
dQ?dydq? 35Q2N, ab . (e [/ ’ QT:]

Fourier tranform

X / dyl at ylyoés(,ub))f <ﬂ7,ub)

Y1

X / Cb] (Y2, as(p)) fi <%7ﬂb>

< epd - / Q b A () o (Qj )+ Blau)|

1

\

=+ Y(Qa Y, QT) bo 2~ VE

Functions, A, B, C, H are all perturbative. TS g



Resummation of the g, distribution

A full-fledged extension of this formalism to Drell-Yan in QCD was carried out by
Collins, Soper and Sterman [Nucl. Phys. B250, 199 (1985)]:

5088 _ r 27202 — )
PP—0l+X
_ Hop (s dbbJy (b
dQQdydq% SSQQN a;}q b @’ /() O( QT)
d T
X / yl at ylyas(,ub))f <y_inub)

\

X exp <r—/j di” [A(ozs(u))ln(Qj) . B(as(u))} >

b 'LL ILL /
- y
4 Dominant for g, < Q
. Y(Q,y, QTD (often referred to as Wterm) by 2e77®
Correction when g ~ Q = T T

(power corrections of g;/Q)
Functions, A, B, C, H are all perturbative. T Vs s



Resummation of the g, distribution

A full-fledged extension of this formalism to Drell-Yan in QCD was carried out by
Collins, Soper and Sterman [Nucl. Phys. B250, 199 (1985)]:

— Ha s J
iQedydg  Bs@N, bZ (Hasle )/ o(bar)
“*=%9-ard function (virtual emissions)
)
/ WGt (210
at\J1ly s Ty
Matching on to Y1
collinear PDFs
(unresolved real
o -
emissions) / _ij Yo, s (1)) f; <_27 Mb)
o y2
Sudakov form factor 7 \
(resummation of ( Q% 1,2 dy? Q2 )
large logarithms X  expq — / —5 {A(Ozs(,u)) In ( 5 ) + B(as (,u))} .
coming from real K py M H )
€missions)
- Y(Qa Y, QT) bo 2~ VE
T T
Ty

Functions, A, B, C, H are all perturbative. T Vs s



g resummation a la CSS and TMD factorisation

We saw a very sketchy derivation of factorisation. Before integrating over the partonic
traverse momenta, we had: A

E%% é>i |

dO’NH°A°B°S

where the dots indicate integration over the internal transverse momenta.

Since the soft function § 1s not observable 1n this process, one can define:

While 4, B, and § are separately affected by the so-called rapidity divergences, their
combination in F1 and F3 1s finite and defines the TMD PDFs. One finally finds:

dO'NH°Fa-Fb

that 1s the essence of TMD factorisation. 57



g resummation a la CSS and TMD factorisation

Perhaps unsurprisingly, in impact-parameter space the convolutions over the internal
transverse momenta become simple products and the TMD factorisation formula reads:

2

do _ 27mag, 14 > | |
dQQdydq% — 38Q2NC - Hab <&S(Q)7Q>/O dbbJ()(qu)Fa(CEl,b,M,Ca)Fb(xQ,b,M,Cb)

Each TMD PDF depends on two scales:

1. the renormalisation scale u 1s the consequence of the UV renormalisation of the
Lagrangian. The only constraint on @ 1s u ~ Q.

2. the rapidity scales {,» originate from the cancellation of the rapidity divergence
between soft function (§) and beam functions (4 and B). The rapidity scales are

kinematically constraint to be £ ¢, = 0*.

The dependence of TMD PDFs on u and { 1s computable in perturbation theory. Indeed,
TMD PDFs obey evolution equations whose solution gives the dependence on ¢ and (.
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g resummation a la CSS and TMD factorisation

The TMD evolution equations read:

Oln F
— K
Oln+/C (k) . OK o (a( ))
oln F - VG W gy, — TV
— vr(as(p)) — v (as(p)) In
Oln p [

In addition, for small values of 5, the TMD PDFs can be matched on to the collinear
PDFs by means of a perturbative coefficient (effect of unresolved radiation):

X

EFo(z,b, 1, C) = Z/ d—;Cai(y,aS(u)yu/ub,C/u?)fz- (;u) = F(u, ¢) ® f(p)

The solution of the evolution equations between the initial scales (y, {;) and the final
scales (u, ) 1s:

g )
Hody

[Fm, )= exp { K(uo) a3+ [ 2 () = e ) 10 2] } €l oS )

For applications in Drell-Yan, the set of imitial/final scales that nullify all the

unresummed logs (central scales) 1s:

to = \/Co = Mb p=+vC=0Q
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g resummation a la CSS and TMD factorisation

One can relate the anomalous dimension yg, 7z, and K to the functions 4 and B finding:

Q* ;.2 2
PO =expd 5 [ | Afu(u)n % + Blow() | { Cluo. Go) @ F(so)
2 2 M H

Plugging this result into the T factorisation formula one finds back the CSS formula.

Of course, this 1s no surprise: after all CSS and T factorisation are the same thing.
The scope was to 1llustrate that there are two different ways of resumming large logs:

1. The diagrammatic approach a la Parisi-Petronzio (that we used to illustrate CSS) 1s
based on factorising emissions in specific limits and exponentiating them. On top of
being used to obtain analytic resummation formulas, it can also be used to perform
resummation directly in momentum space. This approach 1s used by some specific
Monte Carlo generators and has the advantage of being exclusive w.r.t. additional
radiation, allowing one to study more exclusive observables.

2. The renormalisation-group-equation (RGE) approach a la T factorisation are
based on solving evolution equations derived by identifying the singular behaviours.
Their advantage is that they often allow one to derive analytic formulas that are thus
easier to implement.
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Non-perturbative corrections

So far, I omitted the fact that, as it is, the CSS formula gives a divergent result.
The origin of the divergence 1s the fact that we are dealing with integrals of this kind:

(70(/ db o, (1> ......
0 b

therefore when b — oo we are forced to compute a, at very low scales eventually hitting
the Landau pole at b = 1/ Ay that is a non-integrable singularity:

. asocln_l( “)

Aqcp

I
Aqcp

This divergence signals of our lack of control on non-perturbative contributions.

The fact that in 1impact-parameter space non-perturbative corrections take place around

b > A(‘Q}:D, immediately tells us that in momentum space this corrections become

relevant at around g S Agep ~ 1 GeV. <6



Non-perturbative corrections

To make sense of the CSS formula, it 1s necessary to regularise this divergence.

Different recipes exist but I find that the T factorisation “view” provides a
particularly transparent way of separating perturbative from non-perturbative effects.

1. First one fixes a value of b, say bmax, above which non-perturbative domain become

significant. The requirement is 1/b,,,, 2 Agcp. A reasonable value is b, = 1 GeV~!.

2. Then one introduces a monotonic function b.(b) such that:

b.(b) = b for b—0, ol o
bo(D) = bmax  fOr b 00 H0pmremmesseoresmemeeee

An example of a function as such was introduced by CSS: ol

b
b.(b) =
®) V1+b2/02, ._

3. Finally, one rewrites the TMD PDFs as follows: N E

- F(2,b5,)
F(z,b.(b); 1, )

b.(b)

0.6 -

0.4 -

In this way, F'1s always computed 1n the perturbative domain avoiding the Landau pole

and all non-perturbative etfects are relegated into fp that can be determined from data. _,



Non-perturbative corrections

Properties of fnp:

1. It has to go to one as b goes to zero to reproduce the full perturbative regime.

2. It has to go to zero as b becomes large to mimic the Sudakov suppression.

A popular (educated) parameterisation of fnp 1s:

fNP(xv ba C) — €XP |:gl (b) In (QCQ) | 92(557 b):|
0
1. The scaling with ¢ 1s fully determined by TMD evolution. The function g1 can only
depend on b and can be regarded as the anomalous dimension of the non-perturbative

evolution. It 1s 1s flavour independent.

2. The function g2 can depend on both x and » and parametrises the non-perturbative
effects due to the transverse momentum of partons inside the hadron. For this reason
it 1s sometimes called intrinsic or primordial k. It can be flavour dependent.

3. Oy 1s an arbitrary parameter with mass dimensions.

Despite this parameterisation of fnp suggests a physical interpretation to the functions g
and g, fap 1s tightly connected to the arbitrary choice of the b.. function, including the

choice of bmax. As a consequence, no actual physical meaning can be given to it. .



Non-perturbative corrections

Before concluding, it is worth mentioning that the g spectrum for g — 0 as derived by
Paris1 and Petronzio, and consistently with CSS, converges to an asymptotic value that
behaves as a power of Agcp/Q.

This confirms that a proper treatment of momentum conservation cures the DLLA over-
suppression at g = 0 and also tells us that non-perturbative effects, that are also powers
of Agcp/Q, are expected to be relative important in that region.
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End of lecture 1



Questions for the discussion
1. Predictivity of QCD heavily relies on leading-power factorisation:
« What 1s meant by “leading-power”?
Do all processes factorise in QCD?

o If not, what prevents factorisation from happening?

2. Can you say why the solution of the DGLAP equation resums terms like o' In™(u/ )
with m < n.

3. In slide 25, can you show that H Kl for k # O can be written in terms of H"<"% and
the the DGLAP splitting kernels PU*<"1? Try it at one loop (n = 1).

4. Can you think about another example of resummation even more fundamental than
the DGLAP evolution? Hint: consider the strong coupling.

5. The Landau pole signals an actual divergence of the strong coupling or it 1s an artefact
of perturbation theory? Motivate your answer.



