Lecture 2:
Phenomenological aspects of
Drell-Yan and Higgs pI'OdllCtiOIl

Valerio Bertone
IRFU, CEA, Université Paris-Saclay

o
universite g
PARIS-SACLAY

September 09, 2021, MCnet-CTEQ School




Outline

 Historical importance of Drell-Yan production:
» the discovery of charm, bottom, and Z/W weak bosons.
* Modern phenomenological implications of Drell-Yan production:

e constraints on PDFs and the mass of the W boson,
» importance of higher-order corrections,

e resummation at work.
* Higgs production:
« 090 — H + X at fixed order and resummed,

» some phenomenological implicationsof gg - H+ X - yy+ X



How much Drell-Yan and Higgs?

. 8TeV 14TeV  33TeV 100 TeV
Drell-Yan production (Z and W): jos. LHC LHC HELHC  VLHC
* large cross section, 10° é‘mtalé : : A
e clean final states (leptons and missing Ev), ” E = : -
10°F

 an additional jet (e.g. for measuring the g;) 10°
leaves the cross section large,
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* ~30(10)% of W(Z)’s decay leptonically,
e this all allows for precise measurements.
* theoretically well-understood.

Higgs production:

e cross section much smaller (gg — H largest),

* harder to measure,

e harder to extract information.
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The Drell-Yan mass spectrum
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The discovery of the charm: the J/y

In 1970, Glashow, Iliopoulos and Maian1 (GIM)
postulated the existence of a new quark favour: the  ®°[ 242 Events
charm quark [Phys.Rev.D 2 (1970) 1285-1292]: - '

1
-

70| SPECTROMETER g

e originally conceived to explain the suppression of L 22 At normal current E.
FCNC processes (they only occur at one loop), sol. CI-10% curren I S
=

* on top of u, d, and s, GIM 1ntroduced a 4th quark i —
flavour to complete the second generation of quarks. > so} §
= Y—

 Like other quarks, the charm can form bound states ‘§ a0l -
(resonances). E [ :
s S

* In 1974, the BNL observed a very narrow resonance “ 30 ﬁ
at m,+,- = 3.1 GeVin the invariant mass of the : >
electron pair in p+Be — e¢* + ¢~ + X (Drell-Yan): 5ol 2
the J(J/y) hadron was observed for the fist time and i J‘ "f
thus the charm discovered. —

10
» The valence structure of the J/y 1s cc. Therefore, the QM 'H
mass of the J/y suggests m,. ~ 1.5 GeV. The current 0, G AT ALK 3‘2'1”[1135 38
PDG value is m,(m.) = 1.27 £ 0.02 GeV. mere-[0v]




The discovery of the bottom: the Y

In 1977, the E288 experiment at Fermilab observed a

resonance at 1. ,- = — 9.5 GeV 1n the invariant mass

of the muon pair in p+(Cu,Pt) > u"+u~+X
(Drell-Yan): the Y hadron was observed for the first
time and the bottom (or beauty) discovered.

 The valence structure of the Y is bb. Theretfore, the
mass of the Y suggests m;, ~ 4.7 GeV. The current

PDG value 1s m,(m,) = 4. 18J_”8 83 GeV.

 The existence of a fifth quark flavour immediately
triggered the hypothesis of a sixth quark, the top, to
complete the third quark generation.

* The top quark was discovered later in 1995 at Fermilab
by the the Tevatron experiments CDF and DO.

* The presence of a third family and the consequent

3 X 3 mixing matrix (CKM) between up- and down-
type quarks introduced the possibility of CP violation
in the Standard Model.
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The discovery of the Z and W bosons

The massive Z and W are perhaps the most direct manifestation of the spontaneous

breaking of the SU(2); gauge symmetry of the standard model:

* In 1983 both the UAI [Phys. Lett. B 122, 103 (1983)] and the UA2 [Phys. Lett. B 122 476 (1983)]
expenments at the SppS collider at CERN announced the discovery of the W* bosons in
pp — e v,(U,) + X collisions (charged-current Drell-Yan) with mass around 80 GeV.
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The discovery of the Z and W bosons

The massive Z and W are perhaps the most direct manifestation of the spontaneous
breaking of the SU(2); gauge symmetry of the standard model:

* In 1983 both the UAI [Phys. Lett. B 122, 103 (1983)] and the UA2 [Phys. Lett. B 122 476 (1983)]
expenments at the SppS collider at CERN announced the discovery of the W* bosons in
pp — e v,(U,) + X collisions (charged-current Drell-Yan) with mass around 80 GeV.
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: — | « The same year the same collaborations announced the
g o "+ discovery of the Z boson in pp = e*e” + X (neutral current
el 7 - Drell-Yan) (UA1 [Phys. Lett. B 126, 398 (1983)] and UA2

[Phys. Lett. B 129, 130 (1983)).

U A2 Z 1 » UA2 obtained a remarkably precise determination of the Z mass:
1 A7 10 M,=919%x13%1.4GeV (PDG: M, =91.1876 = 0.0021 GeV)
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The Drell-Yan mass spectrum for discovery

Events/GeV
<

CMS Preliminary
\s=7TeV, L =40pb

| llllllll | IIIIIIII | Illlllll | Illlml | llllﬂl'l | IIIIIIII I

1 llI

1 10

2
u*u- mass (GeV/c?)

13



Drell-Yan in PDF determinations

Kinematic coverage

Fixed target DIS

Drell-Yan (both Z and W) is amongst the most | © i

important processes in PDF determinations: | - cooe et hoscon :
| | o | R,
* as opposite to DIS, Drell-Yan gives access to a | -
larger variety of quark PDF combinations: | ofice? 2
* this enables flavour/antiflavour separation. 10°;
. : : . nheaa S#Hq gt €
 very wide kinematic coverage: Y i |
© 00 9% 0PV L% w mwwm

10% - aq, 9" 4 4
> HODPODDDE SDPDOD b b Sy By By O By A SR B DS B DERDOSROENNSD

 collider data, placed at hlgher energies can reachg.. o b DE0m 05D B0 D> SEEHEGPDLOLXSIRR TBLS 2 2

values of x as low as 10~ 3 "T T e e 0 e
» fixed-target data 1s placed at lower scales and - B R L 1 naws
probes quark PDFs higher values of x. \ w
» The g; distribution of the Z gives access to the
gluon PDF. 0
* The precision of the modern data 1s a driving | Wiy
force in PDF determinations: 101 vy
* LHC data as well as new fixed-target data | [EurPhys.J.C 77 (2017) 10, 663]
from Fermilab (SeaQuest). e s = i iy
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Fixed-target Drell-Yan and sea PDFs

Very recently the SeaQuest (E906) experiment at Fermilab has released data for
the ratio of cross sections 6,,;/0,,, [Nature 590 (2021) 7847, 561-565].

This ratio 1s sensitive to the ratio of sea quark PDFs:

opd 4 @)

9 pp u(z)
Being a fixed-target experiment, large values of x are probed giving us access to
the sea quark PDFs in a region that 1s presently poorly known.

Before SeaQuest After SeaQuest ————————
1.4 - 1.4 - - - 0.08+ DIS (no NMC) M +NuSea
L3 : L3 : [arX1v:2108.05786] +NMC M +STAR/SeaQuest
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Significant impact on the &7 and d PDFs at large x.

Currently unresolved tension with the older NuSea (E866) data. s


https://arxiv.org/abs/2108.05786

Drell-Yan g, distribution and the gluon PDF

The g; of the Z boson allows us to constraint the collinear gluon PDF:
» as we have seen 1n the previous lecture, collinear factorisation is reliable for g, ~ Q.

 In order for the Z to have a large g;, 1t needs an object to recoil against. This 1s
typically a jet. As a consequence, the relevant processis pp = Z + ] + X.

* One of the leading-order partonic cross sections contributing to this process 1s:

quark PDF > Z with large g

gluon PDF > hard jet

In [JHEP 07 (2017) 130] the ATLAS 8 TeV data for the g, of the Z with g > 30 GeV
have been included in a PDF fit:

xg(x,Q), comparison Gluon-Gluon, luminosity
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Generated with APFEL 2.7.1

The impact on the gluon PDF 1s significant.



The photon PDF of the proton

If we promote the photon to be a parton, i.e. we allow the photon to contribute to
the proton structure, then we need to allow for a photon PDF.

7 « Al

Y s a

At small and middle lepton-
pair invariant masses Mg, the

At high m,, the photon PDF
becomes relatively larger:

[%]

e probing large x.

%]

High-mass Drell-Yan data

enables us to determine the
photon PDF.

O per bin

Therefore, Drell-Yan production regarded as the
production of a lepton pair receives contribution
also from the photon already at the leading

104
3 e*e” production at LHC 13 TeV
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e*e” production at LHC 13 TeV
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The photon PDF of the proton

In [Eur Phys.J.C 77 (2017) 6, 400] the high-mass ATLAS 8 TeV data was used to

extract the photon PDF:

 QED/EW eftects included up to NLO.
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The mass of the W

A precise measurement of the W
mass would not only provide a
strong test of the Standard Model but
would also allow us to constrain
possible extensions to it.

The most precise measurements of
the ¥ mass 1s achieved by fitting the

pf and m; 1 Drell-Yan production
pp > W+ X - * 0,0, + X.

p(e) (GeV)

Important to model p}” to estimate pﬁ
and thus measure My,.

PDG..

ALEPH - 80.440 +0.051
L3 ] 80.270+0.055
OPAL — m——  80.415:0.052
LEP2 — 80.376 +0.033
: ¥2Idof = 49/41
DO —— 80.383+0.023
Tevatron —l— 80.387 +0.016
¥2/dof = 4.2/6
World av. (old) ... 80.385 +0.015
ATLAS 7 TeV - 80.370+0.019
World av. (new) 4 80.379 +0.012
T N T
80.2 80.4 80.6
M, [GeV]

ete” > WW + X

pp = U (D) + X

19


https://pdg.lbl.gov/2019/reviews/rpp2018-rev-w-mass.pdf

Higher-order corrections: the mass spectrum

Our current understanding of the invariant mass spectrum in Drell-Yan is very good.
CMS 2.3 fb" (ee) 2.8 fb™ (up) (13 TeV)

> 100 YZ —e'e, u
ol [JHEP 12 (2019) 059]
o 10g
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L 07
10°
10
10_5;_ + Data T
10°F - FEWZ (NNLO QCD + NLO EW)
107F | O(ay) O(a) |
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Higher-order corrections: the rapidity

pp - (Z,y")+X
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NNLO corrections significantly improve the agreement with data.



Higher-order corrections: the rapidity
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« NNLO + NLO EW predictions.
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* Very good agreement between data and theory also in lower and higher invariant mass

bins.
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Higher-order corrections: g distribution

The fully differential NNLO (i.e. O(af)) corrections to the cross section for pp — Z+jet
was presented 1n [Phys. Rev. Lett. 117 (2016) 2, 022001]. This calculation allows us to
compute the g of the Z to NNLO accuracy.

. NNLOJET Pp—Z+=1jet Vs=8 TeV NNLOJET PP~ Z+2=1jet Vs=8TeV
(a) 10" ¢ T T T | ] . (a) 30 \ \ I I I I
NNLO —— | NNLO —— |
NLO — | 257 NLO ——
— LO — LO —
> 10% | 201 i
: g
. N 15 -
N o
E 2
8 102 pift > 30 GeV ly®ll <3 10 pft>30GeV Iyl <3
anti-kt (R=0.5) anti-kt (R=0.5)
NNPDF 2.3 NNPDF 2.3
uR=“F=(%v112)‘MZ S HR=HF=(V211,2)'MZ
101 | | ! ! ] ! 0
(b) 2.0 T T T T T T (b) 2.0 T T T T T T
1.8 © ] 1.8 | NLO/LO —— NNLO/NLO —— .
1.6 | .
14 | J = 1.6 B 1
¥ 12 | | X 1.4 .
1.0 © — 1.2 __‘—L‘-\\\\ ’,'I-F,J_
0.8
06 | | 1.0 | .
' NLOLO —— NNLO/NLO ——
04 | 1 1 | 1 1 0.8 l 1 1 | 1 1
0 20 40 60 80 100 120 140 160 -4 -3 -2 -1 0 1 2 3 4
pf [GeV] ¥

NNLO corrections are moderate but significant in the fixed-order domain (gt~ Q, y ~ 1):

Can you guess what happens
if y becomes very large?

Sizeable reduction of scale uncertainties except (as expected) at low g and large rapidity.
23

« improve the agreement with data (see next slide).



Higher-order corrections: g distribution

NNLO corrections improve the agreement with data all across the board:

* for gt ~ O the agreement with data 1s now excellent,

e for gt < (O, NNLO partly captures the double-log behaviour and provides qualitative

improvements 1n the description of the shape of the data: resummation still needed.

Ratio to NLO
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Resummation of the g, distribution

In order to exploit g resummation at g < (0 and still benefit of the fixed-order
calculation at g; ~ (), one needs to adopt a matched procedure like CSS:

dQ;lyqu @V Q, y’QTJ{Y @, vaT)J

Resummation  Power corrections
of a’In*""Y(Qlq;)  of (g;/Q)"
We know how to compute W (see previous lecture), how do we compute Y?
We know that Y contains powers of (gt / Q) only:

* W contains all the logarithmically enhanced terms resummed up to some order:

WNZLL Q 1y, QT Z Z Wmn 1n2n—m—1 (Q)

m=0n={m,/2] i

« The NPLO fixed-order calculation contains log terms and power corrections up to o’ +,
p+1 2n—1

FONPLO Q Y, CIT Z Oé Z F[k n 111 (Q) —+ power corrections
n=1

e The log terms of W up to af 1 have to match those 1in FO, 1t follows that:

o |
FOM™2(Q,y, ar)— [WN(Q, v, qT)LXp o O(art1y — PoWer corrections =¥(Q, y, 4r)

Tl  1mplementation of the additive matching. Others exist. 25



Resummation of the g, distribution

In order to exploit g resummation at g < (0 and still benefit of the fixed-order
calculation at g; ~ (), one needs to adopt a matched procedure like CSS:

dQ;lyqu @V Q, y’QTJ{Y @, vaT)J

Resummation Power coRrections
of " In*""Y(Qlq;)  of (q;/Q)"

We know how to compute W (see previous lecture), how do we cmpute Y?

We know that Y contains powers of (gt / Q) only:

* W contains all the logarithmically enhanced terms resummed up Yo some order:

WNZLL Q 1y, QT Z Z Wmn 1n2n—m—1 (Q)

m=0n={m,/2] i

« The NPLO fixed-order calculation contains log terms and power correcti
p+1 2n—1

FONPLO Q Y, CIT Z()é Z F[k n 111 (Q) —+ power correctipns
n=1

e The log terms of W up to af 1 have to match those 1in FO, 1t follows that:

P I ! '
FON LO(Q, " qT)_ wN LL(Q, Y, qT)pr to O(al™) — power corrections :(Y(Q, Y, QTD

Tl  1mplementation of the additive matching. Others exist. 26
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Resummation of the g, distribution
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Resummation of the g, distribution
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Resummation of the g, distribution
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RadISH + NNLOjet implements the matching procedure described below (except that

the matching 1s multiplicative rather than additive [JHEP 12 (2018) 132]. Can you tell what

1s the difference?). 30
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Resummation of the g, distribution
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Non-perturbative etfects in g distributions

As mentioned in the previous lecture, for g < 1 GeV non-perturbative effects, related to
a, becoming large and eventually hitting the Landau pole, become important.

The TMD view on g resummation allowed for a transparent way of parameterising non-

perturbative effects into a function that can determined through fits to data (like PDFs).
A Little reminder:
2

dO' 27TOéem 0O
dQ%dydg? — 35Q°N, = Hap(as(Q)) /O dbbJo (bgr) Fo (21, b; Q, Q) Fy (2, b; Q, Q)

do this trick:
b

V1402/62

F(z,b; 1, ¢)
F (2, b.(b); 1, ¢)

b.(b) = F(x,b;p1,C) = F(x,b.(b); 1, ¢) = fnp(x,0,O)F (2, b (D); p, )

so that:
do 2T

dQ2dydqs SSQZGJI\I}C - Hab(as(Q))/O dbbJo (bgr) [rp (21,0, Q%) fup (22,0, Q%)

X Fo(x1,b4(0); Q, Q%) Fy (w2, b4 (0); Q, Q)

take small g, data that, parameterise fyp, €.2.:

fnp(z,b,¢) = exp [gl(b) <C§o> + ga(x, b)]

and determine 1t through a fit. 13



Non-perturbative etfects in g distributions
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Non-perturbative etfects in g distributions
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Inclusive Higgs production in gg — H

The main reason why inclusive Higgs production in gluon fusion fits this discussion is
that, like Drell-Yan production, the final state 1s a colour singlet.

As a consequence, factorisation (collinear and TMD) works just as well as for Drell-Yan.

The parallel 1s made particularly transparent in the m, — co limit in which top-quark
loops can be integrated out. As a consequence:

9

g
q
A
____ H ____ H
my — OO

g

q

which amounts to introducing an additional term in the (n, = 5) QCD Lagrangian:

A
£99—>H — = Z GILLVGHI/H

thus making higher-order perturbative calculations more convenient.

The effective coupling A = @(asz) receives perturbative corrections that are currently
known to NNLO [Nucl. Phys. B510 (1998) 61-87]. The partonic cross sections for
pp — H + j + X are also know to NNLO accuracy (e.g. [JHEP 10 (2016) 066]).

This enables a full NNLO calculation of the g; of the Higgs for g ~ M. y



Inclusive Higgs production in gg — H
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A comparison at the level of normalised cross sections between theoretical predictions
and the ATLAS and CMS data for pp — H + X — yy + X is reassuring:

* higher-order corrections seem to get closer to the data,
» substantial theory-uncertainty reduction going from LO to NNLO,

 data accuracy though i1s still not very competitive. 37



Inclusive Higgs production in gg — H

Let us briefly explore what happens at low gy-
Remarkably, the CSS and TMD-factorisation formulas apply (almost) out of the box:

* the only change w.r.t. Drell-Yan 1s replacing quarks with gluons.

dO’CSS

S o Hygn(on(Mi) /O db b.Jo (bgr)

X Z/ dyl gz ylvoés Mb))f (y 7:LLb)
X Z/ dy2 gj y2aas Nb))f (%aﬂb)

2

T Y(yacIT)

X qu%H(QS(MH))/ dbbJO(bQT)FQ(xhb7MH7M12{)F9(CE17baMHaMIQJ)+Y(y7QT>
0

\ 4

~~

W(y,qr)
In this form, the formula assumes that the gluons are unpolarised:

* f; are the collinear unpolarised PDFs,
* 'y 1s the TMD unpolarised gluon distribution.
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Inclusive Higgs production in gg — H

However, it turns out that also linearly polarised gluons contribute to the cross section:

* 1f b 1s small enough, the linearly polarised gluon distribution can be matched onto the
unpolarised gluon PDF:

hJ_be , / zya f’L (gvlL)
( Hb Nb b<<AQéDzz: ] Gy ) ” b

o In fact, factorisation 1ntroduces a new (non-perturbative) T distribution: the
so-called Boer-Mulders TMD h that parameterises the distribution of a linearly
polarised gluon inside an unpolarlsed hadron.

(S =]

 The net result 1s that the factorisation formular 1s modified as follows:

do CSS do CSS
gg—>H+X . gg—>H—|—X (C s G)
dydg? dydq?

X qu_ﬂ{(()és(MH)) |:/ dbbJo(qu) (Qil,b MH,MH) (£C1,b MH,MH)
0

+ / dbbJy(bgr)hi (x1,b, Me, Mi)hy (z1,b, My, M7)| +Y (y,qr)
0

The TMD form allows one to introduce a non-perturbative component for 4 > AQCD

hl x,b; 1, i 1
hi (z,b; 1, C) = {hL (:c(b (b;L OQ)} hi (2,b.(b); 1, ) = fiee (2,6, ) (, b« (D); 15 €)
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Inclusive Higgs production in gg — H

However, it turns out that also linearly polarised gluons contribute to the cross section:

* 1f b 1s small enough, the linearly polarised gluon distribution can be matched onto the
unpolarised gluon PDF:

hJ_CCb , / zya f’l, <£7M>
( Hb Nb b<<AC_QCDZ ] Gy b)) ” b

(

(S =]

o In fact, factorisation 1ntr0duces a new (non-perturbative) T distribution: the
so-called Boer-Mulders TMD h that parameterises the distribution of a linearly
polarised gluon inside an unpolarlsed hadron.

 The net result 1s that the factorisation formular 1s modified as follows:

doCSS 1 o doCSS |1
99—> 99—
> +H(C — G)
dydgr dydaqrz ( )
Unpolarised contribution

X qu%H(@s(MH)) {/OOO dbbJO@QT)@ (xl,b MHaMH) (xl,b MHvMHD

. Linearly polarised contribution
+ / dbbJQ(qu)e (a:l,b MH,MH)hJ'(Zﬂl,b MH,MH)
0

The TMD form allows one to introduce a non-perturbative component for 4 > AQCD

hl X, b ; L 1 1
hL(a: by 1, C) = {hL (:c(b (b;L OQ)} hi (2,b.(0); 1, C) = frep (2,0, Q)i (2, bu (b); 1, €)

T Y(y7 QT)
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Inclusive Higgs production in gg — H
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Inclusive Higgs production in gg — H
Influence of h;h; in pp — H + X
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Inclusive Higgs production in gg — H

One can attempt to assess how well predictions (including linearly-polarised gluons) at
low-g; compare to the LHC Higgs-production data:

pp — H(— vy) + X

L I I I [ I I I I [ I I I [ I I B
| T artemide v2.01 _
I—I—I CMS datai
NLL
0.22 | | | :
| I
'[JHEP 11 (2019) 121] N
O. r | I I | | | | | | | | I [ I I
0. 11. 22. 33. 44

qr(GeV)

Unfortunately, current data does not allow to say much on the accuracy of the formalism
as well as on the TMD gluon distributions. 73




Inclusive Higgs production in gg — H

A carefully study of the Higgs g, matching the resummed calculation with the fixed-

order one for pp - H+ X — yy + X was done in [JHEP 12 (2018) 132] with realistic
cuts on the photons:

3 I 1
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« unreliability of the fixed-order calculation at low p1vv (NLO (left) vs. NNLO (right)),
* reduction of the theoretical uncertainties going from NLO to NNLO,

* dominance of the resummation at low p1¥ in the matched calculation. 44



That’s all folks!
Thank you!



