00000 0000000 000000 00000 00000 000000	Recap	Fixed-order calculations	Electroweak PDFs and parton showers	Electroweak corrections in event generators	Questions
0000 00000000 000000 00000 00	0000	000000	00000000	00000	00

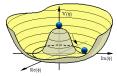
Electroweak corrections II

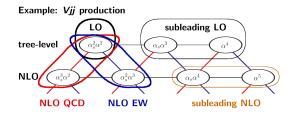
Marek Schönherr

IPPP, Durham University

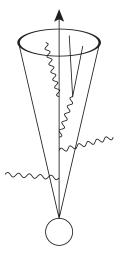
CTEQ-MCnet school 2021

Recap – The electroweak Standard Model


$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{A\nu} F^{\mu\nu} \\ &+ i \mathcal{F} \mathcal{D} \mathcal{F} + h.c. \\ &+ \mathcal{F}_i \mathcal{Y}_{ij} \mathcal{F}_j \mathcal{P} + h.c. \\ &+ |D_{\mu} \mathcal{P}|^2 - V(\mathcal{O}) \end{aligned}$$


Not all of them are independent!

- broken (hidden) symmetry, new (apparent) symmetry $SU(2)_L \times U(1)_Y \longrightarrow U(1)_{QED}$
- dynamically generated mass terms lead to many relations between the apparent EW parameters input parameters ↔ derived parameters
- ⇒ not all parameters can be determined independently


Recap – Electroweak higher order corrections

- designation of contribution given only by its order in α_{s} and α
- NLO QCD: all contribution with one additional power in α_s wrt. the respective Born process
 NLO EW: all contribution with one additional power in α wrt. the respective Born process
- EW corrections may not involve adding an EW particle

Recap – IR safe observables

- the presence of massless quanta necessitates observables to be insenstive to soft/collinear radiation
- differentiate: short-distance parton vs. long-distance identified and measurable object
- same solutions as in QCD: jets (a dressed lepton is the same as a jet)
- problem: all SM particles need to be involved
- need flavour tagging (γ, ℓ, ...) simplified solutions exist, in general needs fragmentation functions

Questions

Electroweak corrections II

- 2 Fixed-order calculations
- **3** Electroweak PDFs and parton showers
- **4** Electroweak corrections in event generators

5 Questions

Questions

Fixed-order calculations

2 Fixed-order calculations

3 Electroweak PDFs and parton showers

6 Questions

Recap 0000	Fixed-order calculations	Electroweak PDFs and parton showers	Electroweak corrections in event generators	Questions 00
Auto	omation			

- $\Rightarrow\,$ emergence of automated frameworks for NLO EW computations along the principles of NLO QCD automation
 - Monte-Carlo frameworks (Born and real emission matrix elements, infrared subtraction, phase space generation, process coordination)
 - Sherpa MS '17
 - MadGraph

OPENLOOPS

- RECOLA

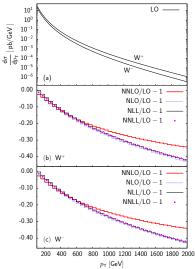
- virtual corrections (EW one-loop matrix elements, renormalisation)
 - GOSAM Chiesa et.al. '15
 - MADLOOP Frixione et.al. '14
 - Kallweit et.al. '14
 - Actis et.al. '12

Frederix et.al. '18

- currently generally limited to fixed-order
- a number of dedicated calculations and private codes

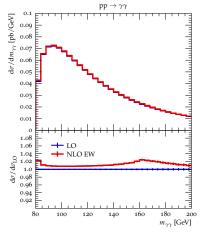
Questions

Phenomenological impact – $p_T(W)$


NLO EW for pp ightarrow *Wj*

- NLO including all contribs
- NLL are univ. Sudakov logs
- NNLL process dependent limit of NLO
- NNLO = NLO + $\frac{1}{2}$ NLL²

EW corrections small inclusively, but reach -30% at $1\,\text{TeV}$

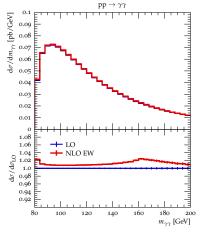

dominated by logarithmic EW Sudakov corrections

Kühn et.al. '05,'06,'07

Recap	Fixed-order calculations	Electroweak PDFs and parton showers	Electroweak corrections in event generators	Questions
0000	000000	00000000	00000	00

Phenomenological impact – diphoton production

Chiesa et.al. '17


NLO EW corrections to diphoton production

• peak-like enhancement around $m_{\gamma\gamma} pprox 160 \, {
m GeV}$

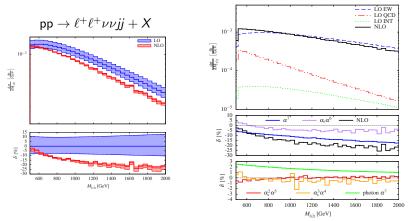
 induced by W-box creating pseudo-resonant structures

 should be accounted for in data-driven background fits in diphoton resonance searches

Phenomenological impact – diphoton production

Chiesa et.al. '17

NLO EW corrections to diphoton production


- peak-like enhancement around $m_{\gamma\gamma} = 2 m_W$
- induced by W-box creating pseudo-resonant structures

 should be accounted for in data-driven background fits in diphoton resonance searches

Questions

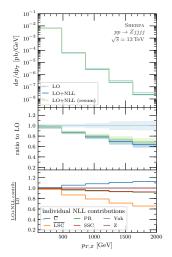
Phenomenological impact – VBS

- multiple contributions at LO and NLO, Biedermann, Denner, Pellen '17 process with largest power of α_s not dominant
- large EW corrections due to ubiquitous large momentum transfers

00000	00000000	00000	00

EW Sudakov approximation

Because the weak bosons are massive and real W and Z radiation (mostly) leads to distinguishable signatures.


The virtual corrections are thus not counterbalanced by real em. corrections.

In the limit that all invariants $s_{ij} \gg m_W$, the virtual weak corrections are given by logarithms of these two scales. \Rightarrow EW Sudakov logarithms

Denner, Pozzorini '00

EW corrections can easily be constructed in this limit.

Bothmann, Napoletano '20

Electroweak PDFs and parton showers

1 Recap

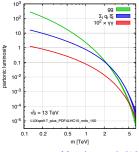
2 Fixed-order calculations

3 Electroweak PDFs and parton showers

4 Electroweak corrections in event generators

5 Questions

QED PDFs

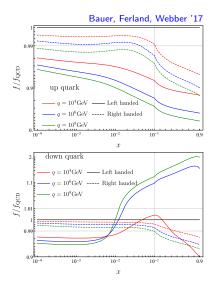

Conventional QCD PDFs are based on QCD splitting functions. LO: $q\to qg,\,g\to gg,\,g\to q\bar{q}$

Current **QCD+QED PDFs** add $q \rightarrow q\gamma$ and $\gamma \rightarrow q\bar{q}$.

- $\gamma \to \ell \bar{\ell}$ typically neglected, justified as photon PDF driven by $q \to q \gamma$
- technically incomplete, NLO QED consistency
- lepton PDFs at $\mathcal{O}(\alpha^2)$ negligible

Other sources of photons:

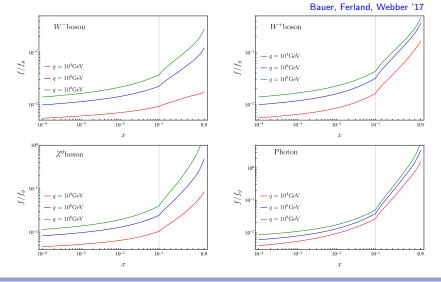
- semi-classical scattering of the em-fields of the incident electrons/protons/ions (EPA) \rightarrow protons stay intact
- scattering through hadronic resonances


Electroweak PDFs

Full QCD+EW PDFs are chiral, f^{L} and f^{R} evolve differently.

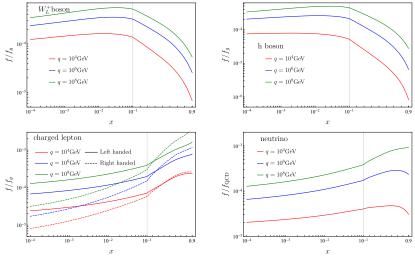
In the unbroken SM

- $f^{\mathsf{L}}: \mathsf{SU}(2)_{\mathsf{L}} \times \mathsf{U}(1)_{\mathsf{Y}}$
- $f^{R} : U(1)_{Y}$
- $\textit{u}^{L}-\textit{d}^{L}\rightarrow 0$ as $\textit{Q}^{2}\rightarrow\infty$


In the broken SM the picture is a little messier and mass effects are important at accessible collider scales.

Recap	Fixed-order calculations	Electroweak PDFs and parton showers	Ele
0000	000000	00000000	00

Electroweak corrections in event generators Questions


Electroweak PDFs

00000 00000	Recap	Fixed-order	calculations
	0000	000000	

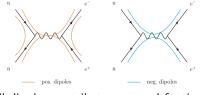
Electroweak PDFs and parton showers 000000000

Electroweak corrections in event generators Questions

Bauer, Ferland, Webber '17

Marek Schönherr

Recap	Fixed-order calculations	Electroweak PDFs and parton showers	Electroweak corrections in event generators	Questions
0000	000000	00000000	00000	00

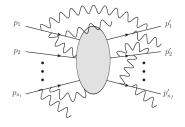

QED parton showers

QED parton showers follow the same principle as QCD parton showers. Add $f \rightarrow f\gamma$ and $\gamma \rightarrow f\bar{f}$ splitting functions. \rightarrow Stefan's lectures

However, QCD is SU(3) whereas QED is U(1). Hence, while in QCD a large- N_c expandsion is sensible, dropping $\frac{1}{N_c^2}$ terms, $\frac{1}{1^2}$ in QED is not such a small number.

Thus, parton showers typically miss the soft-wide-angle radiation pattern.

Example: $u\bar{u} \rightarrow e^+e^-$, 6 dipoles (4 opposite sign, 2 same sign)

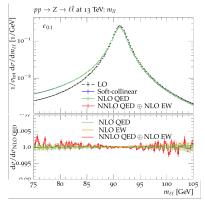


all dipoles contribute on equal footing

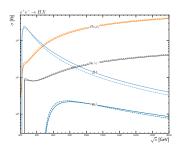
Questions

Soft-photon resummation

 universal soft-photon limit of all-order QED amplitudes (Abelian nature and fermion masses/ absence of divergent photon splittings essential)
 Yennie, Frautschi, Suura '61



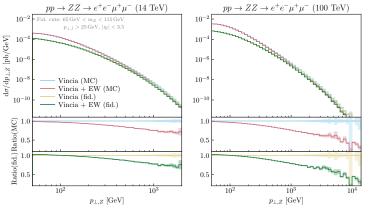
$$\mathrm{d}\sigma^{\mathsf{YFS}} = \sum_{n_{\gamma}} \frac{1}{n_{\gamma}!} \,\mathrm{d}\Phi \, e^{\mathsf{Y}} \prod_{i=1}^{n_{\gamma}} \left[\mathrm{d}\Phi_{k_i} \cdot \alpha \, \tilde{S}(k_i) \right] \left[\tilde{\beta}_0 + \sum_{i=1}^{n_{\gamma}} \frac{\tilde{\beta}_1(k_i)}{\tilde{S}(k_i)} + \ldots \right]$$


- coherent multiple soft-photon emission from Eikonals $ilde{S}$
- re-orders perturbative series in terms of hard-remainders β̃_i defined on reduced phase spaces in multiphoton configurations

Soft-photon resummation

Krauss, Lindert, Linten, MS '18

Krauss, Price, MS tbp



 method of choice for past and future e⁺e⁻ machines

Recap	Fixed-order calculations	Electroweak PDFs and parton showers	Electroweak corrections in event generators	Questions
0000	000000	00000000	00000	00

EW parton showers

Extend splitting functions to EW sector. One crucial caveat: they are spin dependent.

Brooks, Skands, Verheyen '21

1 Recap

- 2 Fixed-order calculations
- 3 Electroweak PDFs and parton showers
- **4** Electroweak corrections in event generators

6 Questions

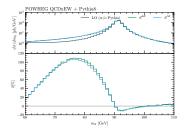
Goal:

We want to include exact NLO EW corrections in an event generator, in addition to the NLO QCD ones.

Solution:

NLO QCD+EW matching (MC@NLO, POWHEG), structurally works the same as NLO QCD alone.

 \rightarrow Simon's lectures


Main problem:

The EW SM is full of masses and resonances. Implementations exist for the most important processes. (V, VV, ..)

Mück, Oymanns '16

NLO QCD+EW matched calculation

NLO QCD and NLO EW matched simultaneously

$$d\sigma_{\mathsf{POWHEG}}^{\mathsf{QCD}+\mathsf{EW}} = \mathrm{d}\Phi_B \,\overline{\mathrm{B}}^{\mathsf{QCD}+\mathsf{EW}} \left\{ \Delta^{\mathsf{QCD}+\mathsf{EW}}(t_c) + \int_{t_c} \mathrm{d}t \, \frac{\mathrm{R}^{\mathsf{QCD}} + \mathrm{R}^{\mathsf{EW}}}{\mathrm{B}} \, \Delta^{\mathsf{QCD}+\mathsf{EW}}(t) \right\}$$

However, if only the large corrections in the Sudakov regime are sought, there is an easy way to incorporate them in multijet merging methods used for ATLAS/CMS's baseline samples. \rightarrow Simon's lecture

• modify MC@NLO $\overline{\rm B}\text{-function}$ to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{\mathrm{B}}_{n,\mathsf{QCD}+\mathsf{EW}_{\mathsf{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathsf{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{I}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{B}_{n,\mathsf{mix}}(\Phi_n)$$

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

However, if only the large corrections in the Sudakov regime are sought, there is an easy way to incorporate them in multijet merging methods used for ATLAS/CMS's baseline samples. \rightarrow Simon's lecture

 modify MC@NLO B-function to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \overline{\mathrm{V}_{n,\mathrm{EW}}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}(\Phi_n)$$

exact virtual contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

However, if only the large corrections in the Sudakov regime are sought, there is an easy way to incorporate them in multijet merging methods used for ATLAS/CMS's baseline samples. \rightarrow Simon's lecture

 modify MC@NLO B-function to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{B}_{n,QCD+EW_{virt}}(\Phi_n) = \overline{B}_{n,QCD}(\Phi_n) + V_{n,EW}(\Phi_n) + I_{n,EW}(\Phi_n) + B_{n,mix}(\Phi_n)$$
exact virtual contribution
approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

However, if only the large corrections in the Sudakov regime are sought, there is an easy way to incorporate them in multijet merging methods used for ATLAS/CMS's baseline samples. \rightarrow Simon's lecture

• modify MC@NLO $\overline{\rm B}\text{-function}$ to include NLO EW virtual corrections and integrated approx. real corrections

optionally include subleading Born

$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}^{\mathsf{T}}(\Phi_n)$$

exact virtual contribution

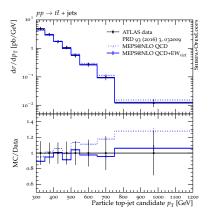
approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

However, if only the large corrections in the Sudakov regime are sought, there is an easy way to incorporate them in multijet merging methods used for ATLAS/CMS's baseline samples. \rightarrow Simon's lecture

• modify MC@NLO $\overline{\rm B}\text{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

optionally include subleading Born


$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}^{\mathsf{Y}}(\Phi_n)$$

exact virtual contribution

approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

Results: $pp \rightarrow t\bar{t} + jets$

Gütschow, Lindert, MS in '18

•
$$pp
ightarrow t\overline{t} + 0, 1j$$
@NLO $+ 2, 3, 4j$ @LO

 additional LO multiplicities inherit electroweak corrections through MENI OPS differential K-factor

Höche, Krauss, MS, Siegert '10

improved description of data

Recap 0000	Fixed-order calculations	Electroweak PDFs and parton showers	Electroweak corrections in event generators 00000	Questions • O

Summary

- inclusive EW corrections are small (in an appropriate ren. scheme), $\mathcal{O}(1 \dots 5\%)$
- EW corrections for observables dominated by large-momentum-transfer processes receive logarithmic corrections, $\mathcal{O}(-10\ldots-50\%)$
- ubiquitous multiple mass scales can induce bumps, edges, kinks due to resonances and thresholds introduced at higher-orders
- while photon PDFs are phenomenologically relevant, full EW PDFs may start to become relevant at the FCC
- EW corrections in event generators available and improve data description

Recap 0000	Fixed-order calculations	Electroweak PDFs and parton showers	Electroweak corrections in event generators	Questions O•

Questions:

- Why do EW corrections generally increase with the typical momentum transfer of the interaction?
- e How do EW PDFs differ from the standard QCD ones?
- 3 Can an existing parton shower easily accommodate EW splitting functions?
- 4 How can NLO EW corrections be incorporated in event generators?