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A triumph for SCET

First N3LL’ resummed event shape distributions with state-of-the-art treatment 
of nonperturbative corrections, e.g.:

αs(MZ
2) = 0.1179 ± 0.0010
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Make e+e- event shapes some of the 
most precise ways to determine αs
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Thrust at N3LL with Power Corrections and a Precision Global Fit for αs(mZ)
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We give a factorization formula for the e+e− thrust distribution dσ/dτ with τ = 1 − T based
on soft-collinear effective theory. The result is applicable for all τ , i.e. in the peak, tail, and far-
tail regions. The formula includes O(α3

s) fixed-order QCD results, resummation of singular partonic
αj
s ln

k(τ )/τ terms with N3LL accuracy, hadronization effects from fitting a universal nonperturbative
soft function defined in field theory, bottom quark mass effects, QED corrections, and the dominant
top mass dependent terms from the axial anomaly. We do not rely on Monte Carlo generators
to determine nonperturbative effects since they are not compatible with higher order perturbative
analyses. Instead our treatment is based on fitting nonperturbative matrix elements in field theory,
which are moments Ωi of a nonperturbative soft function. We present a global analysis of all available
thrust data measured at center-of-mass energies Q = 35 to 207 GeV in the tail region, where a two
parameter fit to αs(mZ) and the first moment Ω1 suffices. We use a short distance scheme to
define Ω1, called the R-gap scheme, thus ensuring that the perturbative dσ/dτ does not suffer
from an O(ΛQCD) renormalon ambiguity. We find αs(mZ) = 0.1135± (0.0002)expt ± (0.0005)hadr ±
(0.0009)pert, with χ2/dof = 0.91, where the displayed 1-sigma errors are the total experimental
error, the hadronization uncertainty, and the perturbative theory uncertainty, respectively. The
hadronization uncertainty in αs is significantly decreased compared to earlier analyses by our two
parameter fit, which determines Ω1 = 0.323GeV with 16% uncertainty.

I. INTRODUCTION

A traditional method for testing the theory of strong
interactions (QCD) at high-precision is the analysis of
jet cross sections at e+ e− colliders. Event shape distri-
butions play a special role as they have been extensively
measured with small experimental uncertainties at LEP
and earlier e+ e− colliders, and are theoretically clean
and accessible to high-order perturbative computations.
They have been frequently used to make precise determi-
nations of the strong coupling αs, see e.g. Ref. [1] for a
review. One of the most frequently studied event shape
variables is thrust [2],

T = max
t̂

∑
i |t̂ · p⃗i|∑
i |p⃗i|

, (1)

where the sum i is over all final-state hadrons with mo-
menta p⃗i. The unit vector t̂ that maximizes the right-
hand side (RHS) of Eq. (1) defines the thrust axis. We
will use the more convenient variable τ = 1 − T . For
the production of a pair of massless quarks at tree level
dσ/dτ ∝ δ(τ), so the measured distribution for τ > 0
involves gluon radiation and is sensitive to the value of
αs. The thrust value of an event measures how much it
resembles two jets. For τ values close to zero the event
has two narrow, pencil-like, back-to-back jets, carrying
about half the center-of-mass (c.m.) energy into each of
the two hemispheres defined by the plane orthogonal to
t̂. For τ close to the multijet endpoint 1/2, the event has
an isotropic multi-particle final state containing a large
number of low-energy jets.

On the theoretical side, for τ < 1/3 the dynamics
is governed by three different scales. The hard scale
µH ≃ Q is set by the e+e− c.m. energy Q. The jet
scale, µJ ≃ Q

√
τ is the typical momentum transverse to

t̂ of the particles within each of the two hemispheres, or
the jet invariant mass scale if all energetic particles in a
hemisphere are grouped into a jet. There is also uniform
soft radiation with energy µS ≃ Qτ , called the soft scale.
The physical description of the thrust distribution can
be divided into three regions,

peak region: τ ∼ 2ΛQCD/Q ,

tail region: 2ΛQCD/Q ≪ τ ! 1/3 , (2)

far-tail region: 1/3 ! τ ≤ 1/2 .

In the peak region the hard, jet, and soft scales are
Q,
√
QΛQCD, and ΛQCD, and the distribution shows a

strongly peaked maximum. Theoretically, since τ ≪ 1
one needs to sum large (double) logarithms, (αj

s ln
kτ)/τ ,

and account for the fact that µS ≃ ΛQCD, so dσ/dτ is
affected at leading order by a nonperturbative distribu-
tion. We call this distribution the nonperturbative soft
function. The tail region is populated predominantly by
broader dijets and 3-jet events. Here the three scales
are still well separated and one still needs to sum loga-
rithms, but now µS ≫ ΛQCD, so soft radiation can be
described by perturbation theory and a series of power
correction parameters Ωi. Finally, the far-tail region is
populated by multijet events. Here the distinction of
the three scales becomes meaningless, and accurate pre-
dictions can be made with fixed-order perturbation the-
ory supplemented with power corrections. The transition
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ations of the second soft function moment parameter
Ω2. Our default choice for the parametrization of the
soft function Smod

τ uses c0 = 1 and cn>0 = 0 with
∆̄(R∆, µ∆) = 0.05 GeV. In this case λ is the only vari-
able parameter of the soft model function Smod

τ , and Ω2

is predetermined by Eq. (57) with c2 = 0. As explained
in Sec. IV we modify Ω2 by setting c2 to nonzero val-
ues. It is instructive to discuss the Ω2 values one should
consider. From the Cauchy-Schwarz inequality one can
show that Ω2/Ω2

1 ≥ 1, giving a strict lower bound on
Ω2. This bound can only be reached if Smod

τ is a delta-
function. Moreover, if Smod

τ is positive definite, vanishing
at k = 0, has a width of order ΛQCD, has its maximum at
a k value of order ΛQCD, and has an exponential fall-off
for large k, then one finds Ω2/Ω2

1 < 1.5. We therefore
adopt the range 1 ≤ Ω2/Ω2

1 ≤ 1.5 as a conservative Ω2

variation to carry out an error estimate. For our default
parametrization we have Ω2/Ω2

1 = 1.18 and changing c2
between ±0.5 gives a variation of Ω2/Ω2

1 between 1.05
and 1.35. We find that the best fit values for αs and Ω1

are smooth linear functions of Ω2/Ω2
1 which allows for a

straightforward extrapolation to the conservative range
between 1.0 and 1.5. The results for the variations of the
best fit values for αs(mZ) and Ω1 for Ω2/Ω2

1 = 1.18+0.32
−0.18

read (δαs(mZ))Ω2 =+0.00017
−0.00013 and (δΩ1)Ω2 =+0.011

−0.015 and
are also shown in Fig. 16. The symmetrized version of
these errors are included in our final results. For our final
results for αs(mZ) we add the uncertainties from Ω1 and
the one from Ω2 quadratically giving the total hadroniza-
tion error. For Ω1(R∆, µ∆) we quote the error due to Ω2

separately.

Final Results

As our final result for αs(mZ) and Ω1(R∆, µ∆), obtained
at N3LL′ order in the R-gap scheme for Ω1, including
bottom quark mass and QED corrections we obtain

αs(mZ) = 0.1135 ± (0.0002)exp

± (0.0005)hadr ± (0.0009)pert,

Ω1(R∆, µ∆) = 0.323 ± (0.009)exp ± (0.013)Ω2

± (0.020)αs(mZ) ± (0.045)pert GeV, (68)

where R∆ = µ∆ = 2 GeV and we quote individual 1-
sigma errors for each parameter. Eq. (68) is the main
result of this work. In Fig. 15 (blue dashed line) and
Fig. 11a (thick dark red line) we have displayed the cor-
responding combined total (experimental+theoretical)
standard error ellipse. To obtain the combined ellipse we
take the theory uncertainties given in Tabs. IV and V to-
gether with the Ω2 uncertainties, adding them in quadra-
ture. The central values in Eq. (68) are determined by
the average of the respective maximal and minimal val-
ues of the theory scan, and are very close to the central
values obtained when running with our default theory
parameters. The fit has χ2/dof = 0.91 with a variation
of ±0.03 for the displayed scan points. Having added the

theory scan and Ω2 uncertainties reduces the correlation
coefficient in Eq. (65) to ρtotalαΩ = −0.212. As a compar-
ison we have also shown in Fig. 11b the combined total
(experimental+theoretical) error ellipse at N3LL′ in the
MS scheme for Ω̄1 where the O(ΛQCD) renormalon is not
subtracted.
Since our treatment of the correlation of the system-

atic experimental errors is based on the minimal over-
lap model, it is instructive to also examine the results
treating all the systematic experimental errors as uncor-
related. At N3LL′ order in the R-gap scheme the re-
sults that are analogous to Eqs. (68) read αs(mZ) =
0.1141 ± (0.0002)exp ± (0.0005)hadr ± (0.0010)pert and
Ω1(R∆, µ∆) = 0.303±(0.006)exp±(0.013)Ω2±(0.022)αs±
(0.055)pert GeV with a combined correlation coefficient of
ρtotalαΩ = −0.180. The results are compatible with the re-
sults of Eqs. (68) and indicate that the ignorance of the
exact correlation of the systematic experimental errors
does not crucially affect the outcome of the fit.

Data Set Choice

We now address the question to which extent the results
of Eqs. (68) depend on the thrust ranges contained in the
global data set used for the fits. Our default global data
set accounts for all experimental thrust bins for Q ≥ 35
in the intervals [τmin, τmax] = [6/Q, 0.33]. (See Sec. VI
for more details.) This default global data set is the
outcome of a compromise that (i) keeps the τ interval
large to increase statistics, (ii) sets τmin sufficiently large
such that the impact of the soft function moments Ωi

with i ≥ 2 is small and (iii) takes τmax sufficiently low
to exclude the far-tail region where the missing order
αsΛQCD/Q corrections potentially become important.
In Fig. 17 the best fits and the respective experimen-

tal 39% and 68% CL error ellipses for the default values
of the theory parameters given in Tab. III are shown for
global data sets based on different τ intervals. The re-
sults for the various τ intervals are each given in different
colors. The results for our default global data set is given
in red color, and the subscript “strict” for some intervals
means that bins are included in the data set if more than
half their range is contained within the interval. For in-
tervals without a subscript the criterion for selecting bins
close to the boundaries of the τ interval is less strict and
generically, if the τmin and τmax values fall in such bins,
these bins are included. The numbers in superscript for
each of the τ intervals given in the figure refers to the to-
tal number of bins contained in the global data set. We
observe that the main effect on the outcome of the fit
is related to the choice of τmin and to the total number
of bins. Interestingly all error ellipses have very similar
correlation and are lined up approximately along the line

Ω1

50.2GeV
= 0.1200− αs(mZ) . (69)

Lowering τmin increases the dependence on Ω2 and leads
to smaller αs and larger Ω1 values. On the other hand,
increasing τmin leads to a smaller data set and to larger
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We present a global fit for ↵s(mZ), analyzing the available C-parameter data measured at
center-of-mass energies between Q = 35 and 207GeV. The experimental data is compared to a
N3LL0 + O(↵3

s) + ⌦1 theoretical prediction (up to the missing four-loop cusp anomalous dimen-
sion), which includes power corrections coming from a field theoretical nonperturbative soft func-
tion. The dominant hadronic parameter is its first moment ⌦1, which is defined in a scheme which
eliminates the O(⇤QCD) renormalon ambiguity. The resummation region plays a dominant role
in the C-parameter spectrum, and in this region a fit for ↵s(mZ) and ⌦1 is su�cient. We find
↵s(mZ) = 0.1123 ± 0.0015 and ⌦1 = 0.421 ± 0.063GeV with �2/dof = 0.988 for 404 bins of data.
These results agree with the prediction of universality for ⌦1 between thrust and C-parameter within
1-�.

I. INTRODUCTION

In order to study Quantum Chromodynamics (QCD)
accurately in the high-energy regime, it is useful to ex-
ploit the wealth of data from previous e

+
e
� colliders

such as LEP. Here the final states coming from the under-
lying partons created in the collisions appear as boosted
and collimated groups of hadrons known as jets. Event
shapes have proven to be very successful to study these
collisions quantitatively. They combine the energy and
momenta of all of the measured hadrons into an infrared-
and collinear-safe parameter which describes the geomet-
ric properties of the whole event by a single variable dis-
tribution. Due to their global nature event shapes have
nice theoretical properties, making it possible to obtain
very accurate theoretical predictions using QCD. Most
e
+
e
� event shape variables quantify how well the event

resembles the situation of two narrow back-to-back jets,
called dijets, by vanishing in this limit. Because the dijet
limit involves restrictions that only allow collinear and
soft degrees of freedom for the final-state radiation, such
QCD predictions involve a number of theoretical aspects
that go beyond the calculation of higher-order pertur-
bative loop corrections. These include factorization, to
systematically account for perturbative and nonpertur-
bative contributions, and the resummation of large log-
arithmic corrections by renormalization group evolution.
Comparisons of predictions for event shapes with experi-
mental data thus provide non-trivial tests of the dynam-
ics of QCD.

Due to the high sensitivity of event shapes to jets
induced by gluon radiation they are an excellent tool
to measure the strong coupling ↵s. For more inclusive
hadronic cross sections (like e

+
e
�

! hadrons) the ↵s

dependence is subleading because it only occurs in cor-
rections to a leading order term, while for event shapes
the ↵s dependence is a leading-order e↵ect. For this rea-
son, the study of event shapes for determining ↵s has
a long history in the literature (see the review [1] and
the workshop proceedings [2]), including recent analyses

which include higher-order resummation and corrections
up to O(↵3

s
) [3–12].

Several previous high-precision studies which deter-
mine ↵s(mZ) [4, 5, 9–11] focus on the event shape called
thrust [13],

⌧ = 1� T = min
~n

 
1�

P
i
|~n · ~pi|P
j
|~pj |

!
, (1)

where ~n is called the thrust axis and it follows from the
above equation that 0  ⌧  1/2. Another event shape,
known as C-parameter [14, 15], can be written as:

C =
3

2

P
i,j

|~pi||~pj | sin
2
✓ij

(
P

i
|~pi|)

2 , (2)

where ✓ij gives the angle between particles i and j. It
is straightforward to show that 0  C  1. In a pre-
vious paper [12] we computed the C-parameter distribu-
tion with a resummation of large logarithms at N3LL0

accuracy, including fixed-order terms up to O(↵3
s
) and

hadronization e↵ects using a field-theoretic nonperturba-
tive soft function. These results were achieved by using
the Soft Collinear E↵ective Theory (SCET) [16–20]. Our
results for C are valid in all three of the peak, tail, and
far-tail regions of the distribution, and are the most ac-
curate predictions available in the literature, having a
perturbative uncertainty of ' 3% at Q = mZ for the re-
gion relevant for ↵s(mZ) and ⌦1 fits. The same accuracy
was previously achieved for thrust, where the remaining
perturbative uncertainty in the ⌧ distribution is ' 2% in
this region [9]. In this paper we make use of these new
C-parameter theoretical results [12] to carry out a global
fit to all available data, comparing the results with the
analogous global fit for thrust [9] where appropriate.
Since both ⌧ and C vanish in the dijet limit, it is worth-

while to contrast them in order to anticipate di↵erences
that will appear in the analysis. Di↵erences between C

and ⌧ include the following:
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FIG. 9. Global fit results for di↵erent choices of
dataset, using our best theory setup at N3LL0 with
power corrections in the Rgap scheme. Consider-
ing the central values from left to right, the datasets
read [Cmin, Cmax ]# of bins: [ 29/Q, 0.7 ]371, [ 22/Q, 0.75 ]453,
[ 23/Q, 0.7 ]417, [ 0.24, 0.75 ]403, [ 24/Q, 0.7 ]409, [ 25/Q, 0.7 ]404
(default), [ 25/Q, 0.6 ]322, [ 25/Q, 0.75 ]430, [ 27/Q, 0.7 ]386,
[ 25/Q, 0.65 ]349, [ 22/Q, 0.7 ]427. We accept bins which are
at least 50% inside these fit regions. The ellipses correspond
to total 1-� uncertainties (experimental + theory) for two
variables (↵s and ⌦1), which are suitable for a direct compar-
ison of the outcome of two-parameter fits. The center of the
ellipses are also shown.

correlation and are lined up approximately along the line

⌦1

41.26GeV
= 0.1221� ↵s(mZ) . (33)

As expected, the results of our fits depend only weakly on
the C range and the size of the global datasets, as shown
in Fig. 9. The size and tilt of the total uncertainty el-
lipses is very similar for all datasets (with the exception of
[ 22/Q, 0.7 ], which clearly includes too much peak data).
Since the centers and the sizes of the uncertainty ellipses
are fully statistically compatible at the 1-� level, this
indicates that our theory uncertainty estimate at N3LL0

really reflects the accuracy at which we are capable of de-
scribing the di↵erent regions of the spectrum. Therefore
a possible additional uncertainty that one could consider
due to the arbitrariness of the dataset choice is actually
already represented in our final uncertainty estimates.

G. Final Results

As our final result for ↵s(mZ) and ⌦1, obtained at
N3LL0 order in the Rgap scheme for ⌦1(R�, µ�), we get

↵s(mZ) = 0.1123 ± 0.0002exp (34)

FIG. 10. C-parameter distribution at N3LL0 order for Q =
mZ showing the fit result for the values for ↵s(mZ) and ⌦1.
The blue band corresponds to the theory uncertainty as de-
scribed in Sec. VB. Experimental data is also shown.

± 0.0007hadr ± 0.0014pert,

⌦1(R�, µ�) = 0.421 ± 0.007exp

± 0.019↵s(mZ) ± 0.060pert GeV,

where R� = µ� = 2 GeV and we quote individual 1-�
uncertainties for each parameter. Here �

2
/dof = 0.99.

Equation (34) is the main result of this work.

Equation (34) accounts for the e↵ect of hadron mass
running through an additional (essentially negligible) un-
certainty. Also, it neglects QED and finite bottom-mass
corrections, which were found to be small e↵ects in the
corresponding thrust analysis in Ref. [9].

Given that we treat the correlation of the system-
atic experimental uncertainties in the minimal overlap
model, it is useful to examine the results obtained when
assuming that all systematic experimental uncertain-
ties are uncorrelated. At N3LL0 order in the Rgap
scheme the results that are analogous to Eq. (34) read
↵s(mZ) = 0.1123±0.0002exp±0.0007hadr±0.0012pert and
⌦1(R�, µ�) = 0.412 ± 0.007exp±0.022↵s

±0.061pert GeV
with a combined correlation coe�cient of ⇢

total
↵⌦ =

� 0.091. The results are compatible with Eq. (34), in-
dicating that the ignorance of the precise correlation of
the systematic experimental uncertainties barely a↵ects
the outcome of the fit.

In Fig. 10 we show the theoretical fit for the
C-parameter distribution in the tail region, at a center-
of-mass energy corresponding to the Z-pole. We use the
best-fit values given in Eq. (34). The band corresponds to
the perturbative uncertainty as determined by the scan.
The fit result is shown in comparison with experimental
data from DELPHI, ALEPH, OPAL, L3 and SLD. Good
agreement is observed for this spectrum, as well as for
spectra at other center of mass values.
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of-mass energy corresponding to the Z-pole. We use the
best-fit values given in Eq. (34). The band corresponds to
the perturbative uncertainty as determined by the scan.
The fit result is shown in comparison with experimental
data from DELPHI, ALEPH, OPAL, L3 and SLD. Good
agreement is observed for this spectrum, as well as for
spectra at other center of mass values.
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In “tail” region, leading nonperturbative effect is a shift by ceΩ1/Q

2-parameter fits to PT/NP effects: break degeneracies

𝛼s
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is still large, 
uncertain.

𝝮1
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Varying slopes = 
smaller overlap.𝝮1

Use different Q’s. 
Or different event shapes.
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 e+e- event shapes in SCET
Consider Angularities, which can be defined in terms of the rapidity and pT 
of a final state particle ‘i’, with respect to the thrust axis:

hep-ph/0303051

[1808.07867]

a = 1 <-> `Jet Broadening’ (for us a<1)
a = 0 <-> `Thrust’

IR safe for a ∈ {-∞, 2}

Figure 1. Angularity distributions at NNLLÕ + O(–2
s
) accuracy, convolved with a renormalon-free

non-perturbative shape function, whose calculation is the subject of this paper. We display the
predictions for three values of a (for now without uncertainties), illustrating roughly where two-jet
and three-or-more-jet events lie in each ·a spectrum. For this illustration, the boundary is drawn
at the value of ·a for a four-particle state that is grouped into pairs of jets with opening angle 30¶.
As a becomes larger (smaller), the peak region is more (less) dominated by purely two-jet events.

In the present work we analyze a class of event shapes known as angularities, which
are defined as [29]

·a = 1
Q

ÿ

i

|p
i

‹| e
≠|÷i|(1≠a)

, (1.1)

where Q is the center-of-mass energy of the collision and the sum runs over all final-state
particles i with rapidity ÷i and transverse momentum p

i

‹ with respect to the thrust axis.
The angularities depend on a continuous parameter a, and they include thrust (a = 0)
and total jet broadening (a = 1) as special cases. Whereas infrared safety requires that
a < 2, we restrict our attention to values of a Æ 0.5 in this work, since soft recoil e�ects
which complicate the resummation are known to become increasingly more important as
a æ 1 [30]. It is also possible to define ·a in Eq. (1.1) with respect to an axis other than
the thrust axis, such as the broadening axis or another soft-recoil-insensitive axis [31]. We
stick to the standard thrust-axis-based definition here, to coincide with the available data.
See [32] for a recent calculation with an alternative axis.

The phenomenological e�ect of varying a is to change the proportions of two-jet-like
events and three-or-more-jet-like events that populate the peak region of the ·a distribu-
tions (see Fig. 1). The relevant collinear scale that enters the factorization of angularity
distributions in the two-jet limit then varies accordingly with a, to properly reflect the
transverse size of the jets that are dominating each region of the distributions.

The resummation of Sudakov logarithms for the angularity distributions is based on
the factorization theorem [29, 33–35]

1
‡0

d‡

d·a

(·a) = H(Q2
, µ)

⁄
dt

a

n dt
a

n̄ dks J
a

n(ta

n, µ) J
a

n̄(ta

n̄, µ) S
a(ks, µ) ”

1
·a ≠

t
a
n + t

a
n̄

Q2≠a
≠

ks

Q

2
,

(1.2)
which arises in the two-jet limit ·a æ 0. Here H is a hard function that contains the
virtual corrections to e

+
e

≠
æ qq̄ scattering at center-of-mass energy Q (normalised to the

Born cross section ‡0); J
a
n,n̄ are quark jet functions that describe the collinear emissions

into the jet directions, and are functions of a variable t
a
n,n̄ of mass dimension (2 ≠ a); and

S
a is a soft function that encodes the low-energetic cross talk between the two jets and

– 3 –
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An all-order dijet factorization theorem for the observable is easily derived in SCET:

Evolving all scales to/from their ‘natural’ settings, one arrives at the resummed cross section:

SCET Talk Workbook

JT

March 19, 2015
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RGE

This predicts the singular component of the cross section.  One must then match to QCD:

Additionally, a treatment of non-perturbative effects is critical in e+e- -> hadrons…

is given in terms of the Laplace-space constants by

c
(2) =

c
2

J̃

2 +
c

2

H
+ c

2

S̃
+ (c1

J̃
)2 + 2c

1

J̃
c

1

S̃
+ c

1

H
(2c

1

J̃
+ c

1

S̃
)

4 + fi
4

120
�2

0

(2 ≠ a)2
(3.7)

+ 2’3�0

(2 ≠ a)2

Ë
“

0

J +
1
1 ≠

a

3
2
—0

È
+ fi

2

12
1

2 ≠ a

Ë
�1 + �0(c1

H + 2c
1

J̃
+ c

1

S̃
) ≠

“
0

J
(“0

J
+ —0)

2 ≠ a

È
.

This formula immediately gives us c
2

J̃
as soon as we determine c

(2) (which, we recall from
Eq. (3.6), is in momentum space), whose extraction from EVENT2 will be described in the
next subsection.

3.2 Two-loop jet function constant

The program EVENT2 [74, 75] gives numerical results for partonic QCD observables in e
+

e
≠

collisions to O(–2
s). Using the method described by Hoang and Kluth [76], we can extract

the singular constant c
(2) in Eq. (3.6), and thus the unknown jet function constant c

2

J̃
via

Eq. (3.7). For pedagogical purposes, we will give our own description of this method in the
language of continuous distributions, which we find more intuitive to understand, rather
than the language of discrete bins, which we encourage the reader to study in [76], as in
practice one implements the discrete method.

The integrated (cumulative) angularity distribution in full QCD has a fixed-order ex-
pansion of the form:

‡c(·a)
‡0

= ◊(·a)
;

1 + –s(Q)
2fi

#
c12 ln2

·a + c11 ln ·a + c10 + r
1

c (·a)
$

(3.8)

+
1

–s(Q)
2fi

22#
c24 ln4

·a + c23 ln3
·a + c22 ln2

·a + c21 ln ·a + c20 + r
2

c (·a)
$<

,

to O(–2
s). The cnm coe�cients should agree with the SCET prediction in Eq. (3.4) for the

singular terms. The r
n
c functions are the nonsingular remainders that vanish as ·a æ 0 and

which are not predicted by the leading power expansion in SCET. Since SCET predicts
the singular coe�cients correctly, the di�erence of the QCD and SCET results is simply
given by these remainders:

‡c(·a)
‡0

≠
‡c,sing(·a)

‡0

= rc(·a) = ◊(·a)
;

–s(Q)
2fi

r
1

c (·a) +
1

–s(Q)
2fi

22

r
2

c (·a)
<

, (3.9)

which we will use in the next subsection to obtain the nonsingular remainder functions r
n
c

from the di�erence of the EVENT2 output and the SCET prediction. To do this, however,
we must know all the cnm coe�cients in Eq. (3.8), including the constants in c20 © c

(2) in
Eq. (3.7). But we do not yet know c

2

J̃
.

In the limit of zero bin size, EVENT2 is generating an approximation to the di�erential
distribution, which takes the form:

1
‡0

d‡

d·a

= A ”(·a) + [B(·a)]+ + r(·a) , (3.10)

where A is the constant coe�cient of the delta function, B is a singular function, turned into
an integrable plus-distribution, and r = drc/d·a is nonsingular, that is, directly integrable
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+ …

order perturbative contributions and more sophisticated treatment of non-perturbative
e�ects now available, we think that the time is ripe for an updated comparison. In particu-
lar, our setup in Eq. (1.4) allows for a clear separation of perturbative and non-perturbative
e�ects, which is not possible with Monte Carlo hadronization models that were tuned to
LEP data and which entered many of the theory comparisons in [48]. We can therefore
rigorously assess the impact of the non-perturbative corrections in our framework.

This paper is organized as follows: In Section 2 we collect the formulae required for
the resummation of Sudakov corrections in the two-jet region, which includes the new two-
loop ingredients from the soft function calculation in [43, 44]. In order to achieve NNLLÕ

accuracy, one in addition needs to obtain the corresponding two-loop jet function terms,
which we determine from a fit to the EVENT2 generator in Section 3. In this section we also
perform the matching of the resummed distribution to the fixed-order O(–2

s) prediction.
Then, in Section 4, we discuss our implementation of non-perturbative e�ects and we
present the final expressions of our analysis after renormalon subtraction. We further
discuss our scale choices in Section 5, and compare our results to the L3 data in Section 6.
Finally, we conclude and give an outlook about a future –s determination from a fit to the
angularity distributions in Section 7. Some technical details of our analysis are discussed
in the Appendix.

2 NNLLÕ resummation

The formalism for factoring and resumming dijet event shapes within a SCETI factorization
framework is well developed and documented in many places (see, e.g., [33, 35, 50]) and will
not be re-derived here. Below we will simply display the final results of these analyses and
collect the required ingredients to achieve the NNLLÕ resummation we desire. The precise
prescriptions for which parts of Eq. (1.4) are needed to which order in –s will be given in
Table 6 in Sec. 4.3. In particular, to reach NNLLÕ accuracy, we need to know the heretofore
unknown two-loop jet and soft anomalous dimensions “

1

J,S
and finite terms of the two-loop

jet and soft functions c
2

J,S
(in a notation we shall define below). These have recently been

determined or can be obtained from results in [43, 44] and the EVENT2 simulations we
report in this paper. The rest of this section details what these ingredients are and how
they enter the final cross sections that we use to predict the angularity distributions.

2.1 Resummed cross section

The analytic forms for the resummed di�erential or integrated cross sections in ·a, derived
in standard references like [34, 35], are given by

‡sing(·a)
‡0

= e
K(µ,µH ,µJ ,µS)

3
µH

Q

4ÊH(µ,µH)3
µ

2≠a

J

Q2≠a·a

42ÊJ (µ,µJ )3
µS

Q·a

4ÊS(µ,µS)

H(Q2
, µH)

◊ ÂJ
1
ˆ�+ln µ

2≠a

J

Q2≠a·a

, µJ

22 ÂS
1
ˆ�+ln µS

Q·a

, µS

2
◊

Y
]

[

1

·a
F(�) ‡ = d‡

d·a

G(�) ‡ = ‡c

, (2.1)
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where the two cases are for ‡ being the di�erential or integrated distributions in Eq. (1.5),
and with the two functions F , G given by

F(�) = e
“E�

�(≠�) , G(�) = e
“E�

�(1 ≠ �) . (2.2)

The Born cross-section

‡0 = 4fi–
2
emNC

3Q2

ÿ

f

5
Q

2

f ≠
2Q

2
vevf Qf

Q2 ≠ m
2

Z

+
Q

4(v2
e + a

2
e)(v2

f
+ a

2

f
)

(Q2 ≠ m
2

Z
)2

6
(2.3)

contains a sum over massless quark flavours f = {u, d, s, c, b} with Qf being the charge of
the associated flavour in units of the electronic charge e, and vf and af are the vector and
axial charges of the flavour:

vf = 1
2 sin ◊W cos ◊W

(T 3

f ≠ 2Qf sin2
◊W ) , af = 1

2 sin ◊W cos ◊W

T
3

f . (2.4)

The jet and soft functions ÂJ, ÂS appearing in Eq. (2.1) are the Laplace transforms of J
a
n,n̄, S

a

from Eq. (1.2), with their arguments written in terms of the logarithms on which they
naturally depend (we suppress their indices to simplify the notation). The total evolution
kernels K, � accounting for the running of the hard function H and the jet and soft functions
ÂJ, ÂS are given by

K(µ, µH , µJ , µS) = KH(µ, µH) + 2KJ(µ, µJ) + KS(µ, µS) ,

� © �(µJ , µS) = 2ÊJ(µ, µJ) + ÊS(µ, µS) ,
(2.5)

constructed out of the individual evolution kernels
KF (µ, µF ) © ≠jF ŸF K�(µ, µF ) + K“F

(µ, µF ) ,

ÊF (µ, µF ) © ≠ŸF ÷�(µ, µF ) ,
(2.6)

which are determined from the anomalous dimensions of the functions F = H, ÂJ, ÂS:

K�(µ, µF ) ©

⁄
µ

µF

dµ
Õ

µÕ �cusp[–s(µÕ)] ln µ
Õ

µF

, (2.7)

÷�(µ, µF ) ©

⁄
µ

µF

dµ
Õ

µÕ �cusp[–s(µÕ)] , K“F
(µ, µF ) ©

⁄
µ

µF

dµ
Õ

µÕ “F [–s(µÕ)] .

The coe�cients jF , ŸF in Eq. (2.6) are given by

jH = 1 , ŸH = 4 , (2.8)

jJ = 2 ≠ a , ŸJ = ≠
2

1 ≠ a
,

jS = 1 , ŸS = 4
1 ≠ a

,

and RG invariance of the cross section Eq. (2.1) imposes two consistency relations on these
anomalous dimension coe�cients,

ŸH + 2jJŸJ + ŸS = 0 , (2.9)
2ŸJ + ŸS = 0 .
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New fixed-order computations
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Improved determination of 2-loop singular constants from extrapolation of EVENT2 predictions using quad precision

log10 τa

∫
1

τa

dτ ra(τ)

LANL T-2 Nuclei cluster

[see also next talk]
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New remainder functions
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Preliminary results for 3-loop fixed-order angularity distributions from EERAD3 (IR cutoff ,  events)10−7 1.5 × 1010

LANL Institutional Computing clusters

Unknown single log coefficient for nonzero a: extract from small  region:τa
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(3-loop results not yet included in cross section predictions presented in this talk)
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 Non-perturbative effects and gapped soft function

When dominant power corrections come from the soft function, NP effects can be 
parameterized into a shape function fmod:

the domain of ·a considered. For angularities with a < 1, power corrections from the
collinear sector are suppressed with respect to those from the soft sector [23, 24]. The
non-perturbative e�ects can then be parameterized into a soft shape function fmod(k) that
is convolved with the perturbative distribution [38, 39, 50]:

S(k, µ) =
⁄

dk
Õ
SPT(k ≠ k

Õ
, µ) fmod(kÕ

≠ 2�a) , (4.1)

which ultimately leads to Eq. (1.4) for the cross section. Here SPT is the soft function
computed in perturbation theory, and �a is a gap parameter, which we will address in the
next subsection. The shape function fmod(k) is positive definite and normalized. We follow
previous approaches and expand the shape function in a complete set of orthonormal basis
functions [56]:

fmod(k) = 1
⁄

C Œÿ

n=0

bn fn

3
k

⁄

4D2

, (4.2)

where

fn(x) = 8

Û
2x3 (2n + 1)

3 e
≠2x

Pn

!
g(x)

"
, (4.3)

g(x) = 2
3

1
3 ≠ e

≠4x
1
3 + 12x + 24x

2 + 32x
3
22

≠ 1 ,

and Pn are Legendre polynomials. The normalization of the shape function implies that
the coe�cients bn satisfy

qŒ
n=0 b

2
n = 1. In practice, we only keep one term in the sum (4.2),

setting bn = 0 for n > 0 (cf. [16, 18, 81]). The parameter ⁄ is then constrained by the
first moment of the shape function as explained in the next subsection. More terms can in
principle be included in Eq. (4.2) if one wishes to study higher non-perturbative moments
beyond the first one.

This function, when convolved with the perturbative distribution from the previous
sections, reproduces the known shift in the tail region [43, 44, 82], which can be shown rig-
orously via an operator product expansion (OPE) [23] to be the dominant non-perturbative
e�ect,4

d‡

d·a

(·a) ≠æ
NP

d‡

d·a

1
·a ≠ c·a

�1

Q

2
. (4.4)

Here �1 is a universal non-perturbative parameter that is defined as a vacuum matrix
element of soft Wilson lines and a transverse energy-flow operator (for details, see [23]).
On the other hand, c·a

is an exactly calculable observable-dependent coe�cient which, for
the angularities, is given by c·a

= 2/(1 ≠ a) [23, 40, 41].5

4 In the peak region, the OPE does not apply and the full shape function fmod(k) is required to capture
the non-perturbative e�ects. Furthermore, the result in (4.4) is not only leading order in the OPE, it is
also subject to other corrections like finite hadron masses and perturbative renormalization e�ects on the
quantity �1, as described in [26].

5The expression for c·a diverges in the broadening limit a æ 1, where the SCETI factorization theo-
rem we use breaks down. A careful analysis revealed that the non-perturbative e�ects to the broadening
distributions are enhanced by a rapidity logarithm, cBT = ln Q/BT [24].
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‘Gap’ parameter accounting for parton -> hadron acceptance

λ constrained by first moment of the shape function complete orthonormal basis

However, both the perturbative soft function and gap parameter suffer renormalon ambiguities. 

4.2 Gap parameter and renormalon subtraction

As advocated in [51], we use a soft function with a non-perturbative gap parameter �a,
as already displayed in Eq. (4.1). The gap parameter accounts for the minimum value of
·a for a hadronic spectrum (the distribution can go down to zero for massless partons, but
not for massive hadrons). In the tail region of the distributions, Eq. (4.1) then leads to a
shift of the perturbative cross section, Eq. (4.4), with

2�1

1 ≠ a
= 2�a +

⁄
dk k fmod(k) . (4.5)

Since the first moment is shifted linearly by �a, this parameter was rescaled in [34] from
its default definition in [51] via

�a = �
1 ≠ a

, (4.6)

where � ≥ �QCD is an a-independent parameter. Note that this determines that, with
Eq. (4.2) truncated at n = 0, the model function parameter ⁄ = 2(�1 ≠ �)/(1 ≠ a). Up to
this point, the barred quantities �1, �(a) are taken to be defined in a perturbative scheme
like MS in which SPT has been calculated. In [51] it was pointed out that such a definition
of the gap parameter �a has a renormalon ambiguity, shared by the perturbative soft
function SPT in Eq. (4.1). This is similar but not identical to the renormalon in the pole
mass for heavy quarks (see, e.g. [83]). To obtain stable predictions, it is necessary to cancel
the ambiguity from both SPT and �a in Eq. (4.1). This can be done by redefining the gap
parameter as

�a = �a(µ) + ”a(µ) , (4.7)

where ”a has a perturbative expansion with the same renormalon ambiguity as SPT (but
opposite sign). The remainder �a is then renormalon free, but its definition depends on
the scheme and the scale of the subtraction term ”a. We adopt here the prescription
chosen in [76] and also later implemented by [16, 18, 34], which is based on the position-
space subtraction for the heavy-quark pole-mass renormalon introduced in [84, 85]. We
will translate this notation to the Laplace-space soft function we have been using in this
paper—see Eq. (2.28). The two formulations are completely equivalent with ‹ ¡ ix.

The subtraction and its evolution equations are easier to formulate in Laplace space
than in momentum space. For the Laplace-space soft function6

ÂS(‹, µ) =
⁄ Œ

0

dk e
≠‹k

S(k, µ) , (4.8)

the convolution in Eq. (4.1) becomes

ÂS(‹, µ) =
Ë
e

≠2‹�a(µ) Âfmod(‹)
ÈË

e
≠2‹”a(µ) ÂSPT(‹, µ)

È
, (4.9)

where we have grouped the renormalon-free gap parameter �a with the shape function
Âfmod, and the perturbative subtraction term ”a with ÂSPT, rendering each group of terms

6We prefer to use a dimensionful Laplace variable in this section, which is related to the one introduced
in Sec. 2.3 by ‹ = ‹a/Q.
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Laplace space

 ambiguity in gap 𝒪(ΛQCD) Δa

Subtract a series with the same/canceling ambiguity from both PT and NP pieces:

9

[0709.3519] 
[0807.1926]



Rgap scheme

Choosing the Rgap scheme to cancel the leading renormalon,

in brackets renormalon free. There are a number of schemes one can choose to define ”a

that achieve cancellation of the leading renormalon. A particularly convenient one found
in [76, 84, 85] is a condition that fixes the derivative of the soft function at some value of
‹ to have an unambiguous value:

Re
“E

d

d ln ‹

Ë
ln ‚SPT(‹, µ)

È

‹=1/(Re
“E )

= 0 , (4.10)

where ‚SPT(‹, µ) = e
≠2‹”a(µ) ÂSPT(‹, µ), which is su�cient to render ‚SPT, and thus �a, to be

renormalon-free. This is known as the “Rgap” scheme, and its condition determines ”a as a
function of a new, arbitrary subtraction scale R, which should be taken to be perturbative,
but small enough to describe the characteristic fluctuations in the soft function. Explicitly,
Eq. (4.10) defines the subtraction term as

”a(µ, R) = 1
2Re

“E
d

d ln ‹

Ë
ln ÂSPT(‹, µ)

È

‹=1/(Re
“E )

, (4.11)

and we see that ”a (and thus �a) depends on two perturbative scales, µ and R. Expanding
the subtraction terms as

”a(µ, R) = Re
“E

5
–s(µ)

4fi
”

1

a(µ, R) +
1

–s(µ)
4fi

22

”
2

a(µ, R) + · · ·

6
, (4.12)

we obtain, for the MS Laplace-space soft function ÂSPT, using its expansion in Eq. (2.28),

”
1

a(µ, R) = �0

S ln µ

R
, (4.13a)

”
2

a(µ, R) = �0

S—0 ln2
µ

R
+ �1

S ln µ

R
+ “

1

S
(a)
2 + c

1

S̃
(a)—0 , (4.13b)

where from Eq. (2.29), �n

S
= ≠2�n/(1 ≠ a), and “

1

S
and c

1

S̃
are given by Eq. (2.32) and

Eq. (2.36).
Eq. (4.13) exhibits logarithms of µ/R that appear in the subtraction term ”a and thus

the renormalon-free gap parameter �a. Since µ = µS will be chosen in the next section to
be a function of ·a, which varies over a large range between µ0 ≥ 1 GeV and Q, a fixed
value of R can only minimize these logarithms in one region of ·a, but not everywhere.
We therefore need to allow R to vary as well to track µS , and so we need to know the
evolution of �a in both µ and R. The µ-RGE is simple to derive. Since �a in Eq. (4.7) is
µ-independent, we obtain

µ
d

dµ
�a(µ, R) = ≠µ

d

dµ
”a(µ, R) © “

µ

�
[–s(µ)] , (4.14)

where from the perturbative expansion of ”a in Eq. (4.13), we can determine

“
µ

�
[–s(µ)] = ≠Re

“E �S [–s(µ)] , (4.15)

explicitly to O(–2
s), and which can be shown to hold to all orders [76]. The solution of this

RGE is given by
�a(µ, R) = �a(µ�, R) + Re

“E
ŸS

2 ÷�(µ, µ�) , (4.16)
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the second line of Eq. (4.29)), and at NNLL(Õ) we keep “
µ

�
, “R to O(–2

s) (i.e up to the last
line). These rules are summarized with all other truncation rules in Table 6 below. Note
that this means that ÷� is actually kept to one order of accuracy lower than indicated by
Eq. (2.18). This is because the µ-evolution of �a in Eq. (4.16) is not multiplied by an
extra logarithm as for the hard, jet, and soft functions in the full factorized cross section.7

Transforming the renormalon-free soft function in Eq. (4.9) back to momentum space,
we obtain the shifted version of Eq. (4.1),

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
≠ 2”a(µ, R), µ

"
fmod

!
k

Õ
≠ 2�a(µ, R)

"
. (4.30)

Then the parameter �1 in Eq. (4.5), describing the non-perturbative shift of the perturba-
tive cross section induced by the shape function, turns into a renormalon-free shift:

2�1(µ, R)
1 ≠ a

= 2�a(µ, R) +
⁄

dk k fmod(k) , (4.31)

We will take the input gap parameter at a reference scale R� = 1.5 GeV to be �(R�, R�) =
0.1 GeV in our phenomenological analysis below. The exact value of this parameter is not
particularly relevant to the tail region in which we focus our comparisons to data [18].

The shift in the perturbative part of Eq. (4.30) can also be expressed in terms of a
di�erential translation operator that acts on the perturbative soft function SPT:

S(k, µ) =
⁄

dk
Õ
Ë
e

≠2”a(µ,R)
d

dk SPT

!
k ≠ k

Õ
, µ

"È
fmod

!
k

Õ
≠ 2�a(µ, R)

"
, (4.32)

which, after integrating by parts, gives

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
, µ

" Ë
e

≠2”a(µ,R)
d

dkÕ fmod

!
k

Õ
≠ 2�a(µ, R)

"È
. (4.33)

In the final cross section, the renormalon-subtracted shape function then enters as a con-
volution against the perturbative distribution,

1
‡0

‡(·a) =
⁄

dk ‡PT

1
·a ≠

k

Q

2Ë
e

≠2”a(µS ,R)
d

dk fmod

!
k ≠ 2�a(µS , R)

"È
, (4.34)

which is the expression we anticipated in Eq. (1.4). This implies we convolve both the
singular and nonsingular parts of the cross section Eq. (1.6) with the same, renormalon-
subtracted shape function. In doing this we follow [18] and ensure a smooth transition from
the resummation to fixed-order regime even after non-perturbative e�ects are included.

7In comparing to the R-evolution for quark masses in [85], it may also appear that we keep one fewer
order at NkLL accuracy than in that paper. But the counting for the logarithms is di�erent in the two
cases, since the logarithms appear as single logarithms for quark masses, but as double logarithms for event
shapes; so the terms we call NkLL correspond to terms that are called Nk≠1LL in [85]. Also, our truncation
scheme seems to di�er from the one applied for the gap parameter in [16, 18], as described in Eq. (A31) of
[18] or Eq. (56) of [16]. However, it is consistent with the corresponding tables in these papers and with
the actual numerical implementations used by these authors in their results [86].
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the second line of Eq. (4.29)), and at NNLL(Õ) we keep “
µ

�
, “R to O(–2

s) (i.e up to the last
line). These rules are summarized with all other truncation rules in Table 6 below. Note
that this means that ÷� is actually kept to one order of accuracy lower than indicated by
Eq. (2.18). This is because the µ-evolution of �a in Eq. (4.16) is not multiplied by an
extra logarithm as for the hard, jet, and soft functions in the full factorized cross section.7

Transforming the renormalon-free soft function in Eq. (4.9) back to momentum space,
we obtain the shifted version of Eq. (4.1),

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
≠ 2”a(µ, R), µ

"
fmod

!
k

Õ
≠ 2�a(µ, R)

"
. (4.30)

Then the parameter �1 in Eq. (4.5), describing the non-perturbative shift of the perturba-
tive cross section induced by the shape function, turns into a renormalon-free shift:

2�1(µ, R)
1 ≠ a

= 2�a(µ, R) +
⁄

dk k fmod(k) , (4.31)

We will take the input gap parameter at a reference scale R� = 1.5 GeV to be �(R�, R�) =
0.1 GeV in our phenomenological analysis below. The exact value of this parameter is not
particularly relevant to the tail region in which we focus our comparisons to data [18].

The shift in the perturbative part of Eq. (4.30) can also be expressed in terms of a
di�erential translation operator that acts on the perturbative soft function SPT:

S(k, µ) =
⁄

dk
Õ
Ë
e

≠2”a(µ,R)
d

dk SPT

!
k ≠ k

Õ
, µ

"È
fmod

!
k

Õ
≠ 2�a(µ, R)

"
, (4.32)

which, after integrating by parts, gives

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
, µ

" Ë
e

≠2”a(µ,R)
d

dkÕ fmod

!
k

Õ
≠ 2�a(µ, R)

"È
. (4.33)

In the final cross section, the renormalon-subtracted shape function then enters as a con-
volution against the perturbative distribution,

1
‡0

‡(·a) =
⁄

dk ‡PT

1
·a ≠

k

Q

2Ë
e

≠2”a(µS ,R)
d

dk fmod

!
k ≠ 2�a(µS , R)

"È
, (4.34)

which is the expression we anticipated in Eq. (1.4). This implies we convolve both the
singular and nonsingular parts of the cross section Eq. (1.6) with the same, renormalon-
subtracted shape function. In doing this we follow [18] and ensure a smooth transition from
the resummation to fixed-order regime even after non-perturbative e�ects are included.

7In comparing to the R-evolution for quark masses in [85], it may also appear that we keep one fewer
order at NkLL accuracy than in that paper. But the counting for the logarithms is di�erent in the two
cases, since the logarithms appear as single logarithms for quark masses, but as double logarithms for event
shapes; so the terms we call NkLL correspond to terms that are called Nk≠1LL in [85]. Also, our truncation
scheme seems to di�er from the one applied for the gap parameter in [16, 18], as described in Eq. (A31) of
[18] or Eq. (56) of [16]. However, it is consistent with the corresponding tables in these papers and with
the actual numerical implementations used by these authors in their results [86].
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Gapped and renormalon free soft function

Final cross section is expanded order-
by-order in bracketed term
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Figure 9. Predictions for the central values of the integrated cross sections at NNLLÕ accuracy in
the low ·a domain, shown here for seven values of the angularity parameter a. Left: Predictions
from the purely perturbative cross section. Right: Predictions after renormalon subtraction as
implemented in Eq. (4.41).

kernels contained in each expression are to be evaluated to the appropriate resummed
logarithmic accuracy as described in Sec. 2.

Eqs. (4.40) and (4.41) represent our final expression for the renormalon-free resummed
and matched cross section that is convolved with a non-perturbative shape function. We
should point out that we will perform the convolution in k prior to choosing particular
values for the scales µH,J,S,ns and R. We have clearly exhibited the dependence on these
scales versus the explicit dependence on ·a appearing in Eqs. (4.38) and (4.39). In the
next section we will describe how we choose these scales, but for now it su�ces to say
that they are functions of the measured ·a in the cross section, and not functions of the
convolution variable ·a ≠ k/Q. Thus the ·a dependence inside the scales µH,J,S,ns and R

are not convolved over in Eq. (4.41). In our numerical code, the convolution between the
explicit ·a ≠ k/Q dependence from Eqs. (4.38) and (4.39) and the k dependence in fmod is
then computed for a given set of scales µi(·a), R(·a).

Fig. 9 illustrates the practical e�ect of implementing the renormalon subtraction and
the convolution with the non-perturbative shape function as described above. We present
the central theory curves at NNLLÕ accuracy for the cumulant cross sections at seven values
of the parameter a, all in the low-·a domain. The curves in the left panel reflect the purely
perturbative calculation, which exhibit unphysical (negative) values for the cross section.
The curves in the right panel, on the other hand, represent the calculation performed with
Eq. (4.41). It is clear that the renormalon cancellation is successful and no unphysical
behavior is observed.

5 Scale choices

5.1 Profile functions

From the arguments of the logarithms in the fixed-order hard, jet, and soft functions
appearing in Eq. (2.11), one can identify the natural scales at which these logarithms are
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Figure 9. Predictions for the central values of the integrated cross sections at NNLLÕ accuracy in
the low ·a domain, shown here for seven values of the angularity parameter a. Left: Predictions
from the purely perturbative cross section. Right: Predictions after renormalon subtraction as
implemented in Eq. (4.41).

kernels contained in each expression are to be evaluated to the appropriate resummed
logarithmic accuracy as described in Sec. 2.

Eqs. (4.40) and (4.41) represent our final expression for the renormalon-free resummed
and matched cross section that is convolved with a non-perturbative shape function. We
should point out that we will perform the convolution in k prior to choosing particular
values for the scales µH,J,S,ns and R. We have clearly exhibited the dependence on these
scales versus the explicit dependence on ·a appearing in Eqs. (4.38) and (4.39). In the
next section we will describe how we choose these scales, but for now it su�ces to say
that they are functions of the measured ·a in the cross section, and not functions of the
convolution variable ·a ≠ k/Q. Thus the ·a dependence inside the scales µH,J,S,ns and R

are not convolved over in Eq. (4.41). In our numerical code, the convolution between the
explicit ·a ≠ k/Q dependence from Eqs. (4.38) and (4.39) and the k dependence in fmod is
then computed for a given set of scales µi(·a), R(·a).

Fig. 9 illustrates the practical e�ect of implementing the renormalon subtraction and
the convolution with the non-perturbative shape function as described above. We present
the central theory curves at NNLLÕ accuracy for the cumulant cross sections at seven values
of the parameter a, all in the low-·a domain. The curves in the left panel reflect the purely
perturbative calculation, which exhibit unphysical (negative) values for the cross section.
The curves in the right panel, on the other hand, represent the calculation performed with
Eq. (4.41). It is clear that the renormalon cancellation is successful and no unphysical
behavior is observed.

5 Scale choices

5.1 Profile functions

From the arguments of the logarithms in the fixed-order hard, jet, and soft functions
appearing in Eq. (2.11), one can identify the natural scales at which these logarithms are
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R-evolution

in brackets renormalon free. There are a number of schemes one can choose to define ”a

that achieve cancellation of the leading renormalon. A particularly convenient one found
in [76, 84, 85] is a condition that fixes the derivative of the soft function at some value of
‹ to have an unambiguous value:

Re
“E

d

d ln ‹

Ë
ln ‚SPT(‹, µ)

È

‹=1/(Re
“E )

= 0 , (4.10)

where ‚SPT(‹, µ) = e
≠2‹”a(µ) ÂSPT(‹, µ), which is su�cient to render ‚SPT, and thus �a, to be

renormalon-free. This is known as the “Rgap” scheme, and its condition determines ”a as a
function of a new, arbitrary subtraction scale R, which should be taken to be perturbative,
but small enough to describe the characteristic fluctuations in the soft function. Explicitly,
Eq. (4.10) defines the subtraction term as

”a(µ, R) = 1
2Re

“E
d

d ln ‹

Ë
ln ÂSPT(‹, µ)

È

‹=1/(Re
“E )

, (4.11)

and we see that ”a (and thus �a) depends on two perturbative scales, µ and R. Expanding
the subtraction terms as

”a(µ, R) = Re
“E

5
–s(µ)

4fi
”

1

a(µ, R) +
1

–s(µ)
4fi

22

”
2

a(µ, R) + · · ·

6
, (4.12)

we obtain, for the MS Laplace-space soft function ÂSPT, using its expansion in Eq. (2.28),

”
1

a(µ, R) = �0

S ln µ

R
, (4.13a)

”
2

a(µ, R) = �0

S—0 ln2
µ

R
+ �1

S ln µ

R
+ “

1

S
(a)
2 + c

1

S̃
(a)—0 , (4.13b)

where from Eq. (2.29), �n

S
= ≠2�n/(1 ≠ a), and “

1

S
and c

1

S̃
are given by Eq. (2.32) and

Eq. (2.36).
Eq. (4.13) exhibits logarithms of µ/R that appear in the subtraction term ”a and thus

the renormalon-free gap parameter �a. Since µ = µS will be chosen in the next section to
be a function of ·a, which varies over a large range between µ0 ≥ 1 GeV and Q, a fixed
value of R can only minimize these logarithms in one region of ·a, but not everywhere.
We therefore need to allow R to vary as well to track µS , and so we need to know the
evolution of �a in both µ and R. The µ-RGE is simple to derive. Since �a in Eq. (4.7) is
µ-independent, we obtain

µ
d

dµ
�a(µ, R) = ≠µ

d

dµ
”a(µ, R) © “

µ

�
[–s(µ)] , (4.14)

where from the perturbative expansion of ”a in Eq. (4.13), we can determine

“
µ

�
[–s(µ)] = ≠Re

“E �S [–s(µ)] , (4.15)

explicitly to O(–2
s), and which can be shown to hold to all orders [76]. The solution of this

RGE is given by
�a(µ, R) = �a(µ�, R) + Re

“E
ŸS

2 ÷�(µ, µ�) , (4.16)
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with an initial condition at some scale µ�, and where ŸS = 4/(1≠a) was given in Eq. (2.8)
and the kernel ÷� was defined in Eq. (2.7).

The evolution of the gap parameter �a(µ, R) in R is a bit more involved, and was
solved in [85] for quark masses and applied to the soft gap parameter in [76]. We follow
this derivation here (in our own notation). Since from Eq. (4.16) we know how to evolve
�a(µ, R) in µ, we just need to derive the evolution of �a(R, R) in R. Since �a in Eq. (4.7)
is also R-independent, we can derive from the perturbative expansion of ”a in Eq. (4.13)
the “R-evolution” equation:

d

dR
�a(R, R) = ≠

d

dR
”a(R, R) © ≠“R[–s(R)] , (4.17)

where “R has a perturbative expansion,

“R[–s(R)] =
Œÿ

n=0

1
–s(R)

4fi

2n+1

“
n

R , (4.18)

whose first two coe�cients we read o� from Eqs. (4.12) and (4.13),

“
0

R = 0 , “
1

R = e
“E

2
#
“

1

S(a) + 2c
1

ÂS—0

$
. (4.19)

Even though “
0

R
= 0 for the soft gap parameter (since “

0

S
(a) = 0), we will keep it symboli-

cally in the solution below for generality (and for direct comparison with the quark mass
case in [85]).

To solve Eq. (4.17), we integrate:

�a(R1, R1) ≠ �a(R�, R�) = ≠

⁄
R1

R�

dR

R
R “R[–s(R)] , (4.20)

multiplying and dividing by R in the integrand, anticipating using Eq. (2.21) to change
integration variables to –s. But first we need to invert –s(R) to express R. To this end,
we write Eq. (2.21) in the form

ln R

R�

=
⁄

–s(R)

–s(R�)

d–

—[–] = G[–s(R)] ≠ G[–s(R�)] , (4.21)

where G[–] is the antiderivative of 1/—[–],

G
Õ[–] = 1

—[–] = ≠
2fi

—0

1
–2

1
1 + –

4fi

—1
—0

+
!

–

4fi

"2 —2
—0

+ · · ·

. (4.22)

This determines G up to a constant of integration (we e�ectively choose it such that
G[–] æ 0 as – æ Œ). If R, R� are scales for which –s is perturbative, we can determine
G explicitly order by order,

G[–] = 2fi

—0

5 1
–

+ —1

4fi—0

ln – ≠
B2

(4fi)2
– + · · ·

6
, (4.23)
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Sum logs by μ and R evolution:

Want to keep R near IR scales, but also avoid large logs  in subtraction termsln
μS
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Before considering gapped renormalons, the leading-order NP effect is a constant shift:

where α = e−η′

, as n → αn and n̄ → α−1n̄. (This is also known in SCET as type-III
reparametrization invariance [46].) The only change is in the operator ET (η):

U(Λ(η′))ET (η)U(Λ(η′))† = ET (η + η′) , (57)

which follows from the defining relation for the ET operators, Eq. (46). Thus, the argument of
the operator ET (η) in the shape function in Eq. (55) may be shifted to any value of rapidity,
ET (η) → ET (η + η′). At this stage, this does not yet allow us to perform the rapidity
integral of fe(η) inside the delta function. Thus we do not find that the leading power
correction simply shifts the argument of the perturbative event shape distributions, as the
delta function is a highly nonlinear function of the energy flow operator and sits sandwiched
between Wilson lines in the matrix element. If we do neglect correlations between these
operators, we derive a delta function for the shape function, and reproduce the shift in the
distribution, Eq. (52) [9, 44].

The boost property (57) of a single operator, however, gives a strong result when applied
to the first moment of an event shape distribution [14]. Taylor expanding the delta function
in Eq. (55) (which is valid if we integrate the distribution over a sufficiently large region
near the endpoint), we find

Se(e) = δ(e) − δ′(e)
1

Q

∫

dη fe(η)
1

NC

Tr ⟨0|Y
†
n̄Y

†
nET (η + η′)YnY n̄ |0⟩ + · · · . (58)

Recalling the boost properties of the Wilson lines and the energy flow operators ET (η), we
are free to choose any value for η′ in this expression. Then, choosing η′ = −η, we find that,
remarkably, we may take the matrix element of the ET operator out of the integral over η,
leaving the result

Se(e) = δ(e) − δ′(e)ce

A

Q
+ · · · , (59)

where the coefficient ce is given by the integral,

ce =

∫ ∞

−∞

dη fe(η), (60)

and the universal quantity A is

A =
1

NC

Tr ⟨0|Y
†
n̄Y †

nET (0)YnY n̄ |0⟩ . (61)

For the C-parameter and angularities τa, the integrals of the corresponding weight functions,

fC(η) =
3

cosh η
, fτa = e−|η|(1−a), (62)

over all rapidities give the coefficients,

cC = 3π, cτa =
2

1 − a
. (63)

When convoluted with the perturbative distribution, Se(e) reproduces the universality re-
lations of Eq. (51) for the first moments of the distributions. We have thus established

20

Note:  this is only valid in the tail region!

Define an ‘effective shift’ of the distribution in the Rgap scheme:

 Effective non-perturbative shifts

Accuracy �cusp “F , “µ
�, “R — H, J̃, S̃, ”a

LL –s 1 –s 1

NLL –
2
s –s –

2
s 1

NNLL –
3
s –

2
s –

3
s –s

N3LL –
4
s –

3
s –

4
s –

2
s

Accuracy H, J̃, S̃, ”a

NLLÕ
–s

NNLLÕ
–

2
s

N3LLÕ
–

3
s

Matching r
n(·a)

+O(–s) –s

+O(–2
s) –

2
s

+O(–3
s) –

3
s

Table 6. Ingredients we include at various orders of unprimed NkLL (Left), primed NkLLÕ (Middle),
and matched (Right) accuracies, up to a given fixed order O(–n

s
). The tables apply to the inte-

grated distribution in Eq. (4.38) and the Laplace-transformed distribution, but not, for unprimed
accuracies, directly to the di�erential form in Eq. (2.1)—see [35] for details. We have included
a counting for the renormalon subtractions terms ”a in Eq. (4.12) and the µ- and R-evolution
anomalous dimensions “

µ

�, “R in Eqs. (4.15) and (4.18) as described in the text.

In practice we expand out the shape function terms to the order we work in –s,

e
≠2”a(µS ,R)

d

dk fmod(k ≠ 2�a(µS , R)) = f
(0)

mod
(k ≠ 2�a(µS , R)) + f

(1)

mod
(k ≠ 2�a(µS , R))

+ f
(2)

mod
(k ≠ 2�a(µS , R)) , (4.35)

where

f
(0)

mod
(k ≠ 2�a(µS , R)) = fmod(k ≠ 2�a(µS , R)) , (4.36a)

f
(1)

mod
(k ≠ 2�a(µS , R)) = ≠

–s(µS)
4fi

2”
1

a(µS , R)Re
“E f

Õ
mod(k ≠ 2�a(µS , R)) , (4.36b)

f
(2)

mod
(k ≠ 2�a(µS , R)) =

1
–s(µS)

4fi

22Ë
≠2”

2

a(µS , R)Re
“E f

Õ
mod(k ≠ 2�a(µS , R)) (4.36c)

+ 2(”1

a(µS , R)Re
“E )2

f
ÕÕ
mod(k ≠ 2�a(µS , R))

È
,

with ”
1,2
a (µS , R) from Eq. (4.13). The order to which these terms are kept at each accuracy

are included in Table 6.

4.3 Final resummed, matched, and renormalon-subtracted cross section

We now collect all pieces described above, giving our final expressions for the resummed
cross section, matched to fixed-order and convolved with a renormalon-free shape function.

In evaluating the convolution in Eq. (4.34), we must truncate the product of the
fixed-order perturbative pieces contained in Eqs. (2.11) and (3.13) along with the non-
perturbative pieces in Eq. (4.35) to the appropriate order in –s for NkLL(

Õ
) accuracy.

Namely, starting with Eq. (2.11) for the integrated distribution, we expand the fixed-order
coe�cients in powers of –s:

‡c,PT(·a)
‡0

= ‡
LO

c (·a) + ‡
NLO

c (·a) + ‡
NNLO

c (·a) , (4.37)
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Z
dk k

"
X

i

f (i)
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#
(1)

1

Shape function expanded order-by-order depending on logarithmic accuracy:
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Z
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dk fmod (k � 2�a (µS , R)) =

Z
dk k

"
X

i

f (i)
mod (k � 2�a (µS , R))

#
(1)

d�

d⌧a
(⌧a) �!

NP

d�

d⌧a

✓
⌧a � c⌧a

⌦1

Q

◆
(2)

1
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Z
dk k e�2�a(µS ,R) d

dk fmod (k � 2�a (µS , R)) =

Z
dk k

"
X

i

f (i)
mod (k � 2�a (µS , R))

#
(1)

d�

d⌧a
(⌧a) �!

NP

d�

d⌧a

✓
⌧a � c⌧a

⌦1

Q

◆
(2)

⌦1 =
1

NC
Tr h0|Y †

n̄Y
†
nET (0)YnY n̄ |0i (3)

1

≡
2

1 − a
Ωeff

1



Growing shifts

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

τ-0.5
0.0 0.1 0.2 0.3 0.4 0.5

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

τ0.
0.0 0.1 0.2 0.3 0.4 0.5 0.6

1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85

τ0.5

Shift
R-Gap

Distributional shifts at NNLL’ accuracy (central profile scales):

Effectively, we shift the distribution to the right by larger amounts as we move from the 2-jet region out to the multi-jet tail. 
What might be the effect on extracting ?αs
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A scheme to limit the growth of the shift
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Can we find a way to cut off the growth of this shift? i.e. turn off R-evolution above some :τ = τmax

γR → θ(Rmax − R)γR R = R(τ)

d
dR

δa(R, R) = γR[αs(R)]θ(Rmax − R)need:

δa(R, R) = ReγE[ αs(R)
4π

δ1
a(R, R) + (αs(R)

4π )
2
δ2

a(R, R) + ⋯]recall:

to the order we need,  
just change the R in front to: R* ≡ {R R < Rmax

Rmax R ≥ Rmax



A scheme to limit the growth of the shift
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d
dR

δ*a (R, R) = θ(Rmax − R)eγEδa(R, R) + 𝒪(α3
s )

δ*a (μ, R) =
1
2

R*eγE
d

d ln ν [ln SPT(ν, μ)]ν=1/(ReγE)“R* scheme”

γ*R = θ(Rmax − R)eγE[ αs(R)
4π

⋅ 0 + (αS(R)
4π )

2

γ1
R + 𝒪(α3

s )]
γΔ[αs(μ)] = − R*eγEΓS[αs(μ)]

To the order we work:

R-evolution:

-evolution:μ

Nothing fancy. Just one way to freeze growth of effective shift for large  in event shapes.τa



Frozen shifts
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Rmax = ∞
Rmax = 10 GeV
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Rmax = 5 GeV
constant shift



R vs R* profiles
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hard jet muNS R R*(Rmax
= R(t1))

soft
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In our results, we let R* grow until we hit , where we finish transitioning from “shape 
function” region to “resummation region” in profile functions:

τa = t1(a)

Different Rmax values are probed in tandem with variation of the t1 profile parameter



Convergence in R vs R* schemes
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Q = MZ, a = 0.25
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Convergence in R vs R* schemes
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Q = MZ, a = -0.5

R* scheme:

Rgap scheme:
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Effect on thrust fits
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[NNLL’+ ]𝒪(α2
s )
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green -> red : several other systematics, e.g. profile functions, no b-mass or QED corrections (for us), 
slightly different data sets/bins, scale setting in bins…

[NNLL’+ ]𝒪(α2
s )



Effect on angularity fits (all a)
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Effect on angularity fits (single a’s)
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Consistent shift from using R*
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There are still lots of systematics to consider: fitting regions, choice of profile functions, 
data sets, scale choice inside bins, etc. Our illustrations are based on NNLL’+  
predictions only, so far. 
You (and we!) are not allowed to quote a value of  or  coming from this talk!! 
What seems consistent is, when controlling on other systematic choices, a shift in  of 
about a few percent when switching from standard Rgap to R* scheme. 
Shifted values are within uncertainties, but might alleviate tension with PDG value. 

 Similar conclusion, from different considerations, as G. Luisoni, P. Monni, G. Salam [2012.00622]  
who tried varying size of nonperturbative shift in C-parameter distribution as function of C  
(smaller shifts for large C larger values of  by a few percent)

𝒪(α2
s )

αs Ω1

αs

⇒ αs



Backups
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New remainder functions from EERAD3
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using LANL Institutional Computing

a=0:
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Effect of scale setting & R-scheme on angularity fits
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 “midpoint” scales  “endpoint” scales
σi
bin = σc(τi+1, μJ,S(τmid)) − σc(τi, μJ,S(τmid)) σi

bin = σc(τi+1, μJ,S(τi+1)) − σc(τi, μJ,S(τi))

“spurious” uncertainties (cf. 1006.3080)

 worth exploring “total integral”-preserving scale profiles of Bertolini, Solon, Walsh [1701.07919]

may not preserve total cross section (cf. 1401.4460) 



Data sets
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------ Summary ------
Totlal: 516
Q > 95 : 345
Q < 88 : 89
Q ~ MZ : 82

ALEPH-2004: 133. GeV (7)
ALEPH-2004: 161. GeV (7)
ALEPH-2004: 172. GeV (7)
ALEPH-2004: 183. GeV (7)
ALEPH-2004: 189. GeV (7)
ALEPH-2004: 200. GeV (6)
ALEPH-2004: 206. GeV (8)
ALEPH-2004: 91.2 GeV (26)
AMY-1990: 55.2 GeV (5)
DELPHI-1999: 133. GeV (7)
DELPHI-1999: 161. GeV (7)
DELPHI-1999: 172. GeV (7)
DELPHI-1999: 89.5 GeV (11)
DELPHI-1999: 93. GeV (12)
DELPHI-2000: 91.2 GeV (12)
DELPHI-2003: 183. GeV (14)
DELPHI-2003: 189. GeV (15)
DELPHI-2003: 192. GeV (15)
DELPHI-2003: 196. GeV (14)
DELPHI-2003: 200. GeV (15)
DELPHI-2003: 202. GeV (15)
DELPHI-2003: 205. GeV (15)
DELPHI-2003: 207. GeV (15)
DELPHI-2003: 45. GeV (5)
DELPHI-2003: 66. GeV (8)
DELPHI-2003: 76. GeV (9)
JADE-1998: 35. GeV (5)
JADE-1998: 44. GeV (7)
L3-2004: 130.1 GeV (11)
L3-2004: 136.1 GeV (10)
L3-2004: 161.3 GeV (12)
L3-2004: 172.3 GeV (12)
L3-2004: 182.8 GeV (12)
L3-2004: 188.6 GeV (12)
L3-2004: 194.4 GeV (12)
L3-2004: 200. GeV (11)
L3-2004: 206.2 GeV (12)
L3-2004: 41.4 GeV (5)
L3-2004: 55.3 GeV (6)
L3-2004: 65.4 GeV (7)
L3-2004: 75.7 GeV (7)
L3-2004: 82.3 GeV (8)
L3-2004: 85.1 GeV (8)
L3-2004: 91.2 GeV (10)
OPAL-1997: 161. GeV (7)
OPAL-2000: 172. GeV (8)
OPAL-2000: 183. GeV (8)
OPAL-2000: 189. GeV (8)
OPAL-2005: 133. GeV (6)
OPAL-2005: 177. GeV (8)
OPAL-2005: 197. GeV (8)
OPAL-2005: 91. GeV (5)
SLD-1995: 91.2 GeV (6)
TASSO-1998: 35. GeV (4)
TASSO-1998: 44. GeV (5)

ALEPH-2004: 133. GeV (7)
ALEPH-2004: 161. GeV (7)
ALEPH-2004: 172. GeV (7)
ALEPH-2004: 183. GeV (7)
ALEPH-2004: 189. GeV (7)
ALEPH-2004: 200. GeV (6)
ALEPH-2004: 206. GeV (8)
ALEPH-2004: 91.2 GeV (26)
AMY-1990: 55.2 GeV (5)
DELPHI-1999: 133. GeV (7)
DELPHI-1999: 161. GeV (7)
DELPHI-1999: 172. GeV (7)
DELPHI-1999: 89.5 GeV (11)
DELPHI-1999: 93. GeV (12)
DELPHI-2000: 91.2 GeV (12)
DELPHI-2003: 183. GeV (14)
DELPHI-2003: 189. GeV (15)
DELPHI-2003: 192. GeV (15)
DELPHI-2003: 196. GeV (14)
DELPHI-2003: 200. GeV (15)
DELPHI-2003: 202. GeV (15)
DELPHI-2003: 205. GeV (15)
DELPHI-2003: 207. GeV (15)
DELPHI-2003: 45. GeV (5)
DELPHI-2003: 66. GeV (8)
DELPHI-2003: 76. GeV (9)
JADE-1998: 35. GeV (5)
JADE-1998: 44. GeV (7)
L3-2004: 130.1 GeV (11)
L3-2004: 136.1 GeV (10)
L3-2004: 161.3 GeV (12)
L3-2004: 172.3 GeV (12)
L3-2004: 182.8 GeV (12)
L3-2004: 188.6 GeV (12)
L3-2004: 194.4 GeV (12)
L3-2004: 200. GeV (11)
L3-2004: 206.2 GeV (12)
L3-2004: 41.4 GeV (5)
L3-2004: 55.3 GeV (6)
L3-2004: 65.4 GeV (7)
L3-2004: 75.7 GeV (7)
L3-2004: 82.3 GeV (8)
L3-2004: 85.1 GeV (8)
L3-2004: 91.2 GeV (10)
OPAL-1997: 161. GeV (7)
OPAL-2000: 172. GeV (8)
OPAL-2000: 183. GeV (8)
OPAL-2000: 189. GeV (8)
OPAL-2005: 133. GeV (6)
OPAL-2005: 177. GeV (8)
OPAL-2005: 197. GeV (8)
OPAL-2005: 91. GeV (5)
SLD-1995: 91.2 GeV (6)
TASSO-1998: 35. GeV (4)
TASSO-1998: 44. GeV (5)

For thrust: For angularities:

Data for a = {-1.0, -0.75. -0.5, -0.25, 0.0, 0.25, 0.5, 0.75} at 91.2 and 197 GeV

Total number of bins = (bins per a) x (number of a) = 25 x 7 = 175 bins @ Q = 91.2 GeV

e.g. a = -1 and 0.5, Q = 91.2 GeV, compared to our NNLL’ prediction:
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Fitting regions currently used

30

For single-angularity fits:

 For all-angularity fit:
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Shift in distributions
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 from Rgap to R* scheme,  
are actually quite small:
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Note these shifts will also 
grow for larger Q



Correlations among angularities

32

 binith

T k = (⌧ (1)a=�1, ⌧
(2)
a=�1, . . . ⌧

(i)
a=�1, . . . ⌧

(1)
a=�0.75, . . . ⌧

(1)
a=�0.5, . . . )

k
<latexit sha1_base64="2Ak5zsPBuO72fMKJE5NW2DNLRLs="></latexit>

 experimentkth

k = 1, 2, 3, . . . , 105
<latexit sha1_base64="chBOyhJ2ESM35nebBJ0GdmOVlsM=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgodQklbRi1D04rGCbYU2ls1m0y7d7IbdjVBCL/4VLx4U8erP8Oa/cdvmoK0PBh7vzTAzL0gYVdp1v63C0vLK6lpxvbSxubW9Y+/utZRIJSZNLJiQ9wFShFFOmppqRu4TSVAcMNIOhtcTv/1IpKKC3+lRQvwY9TmNKEbaSD37YAgvoedUnZrTZaHQyoGe+3AGe3bZrbhTwEXi5aQMcjR69lc3FDiNCdeYIaU6nptoP0NSU8zIuNRNFUkQHqI+6RjKUUyUn00fGMNjo4QwEtIU13Cq/p7IUKzUKA5MZ4z0QM17E/E/r5Pq6MLPKE9STTieLYpSBrWAkzRgSCXBmo0MQVhScyvEAyQR1iazkgnBm395kbSqFa9Wqd6elutXeRxFcAiOwAnwwDmogxvQAE2AwRg8g1fwZj1ZL9a79TFrLVj5zD74A+vzBwWQk3k=</latexit>

each experiment containing 
  events4.93 × 105

Vij =
1

105
(T � µT )

T (T � µT ) =
<latexit sha1_base64="FzO/EnMr07r+hl68WC2V/tIHRyQ="></latexit>

a = �1
<latexit sha1_base64="giKf9I4rSLoaIJzZ7UbkRt5Tqe0=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbFi2W3FfQiFLx4rGA/oF1KNs22oUl2SbJCWfoXvHhQxKt/yJv/xmy7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHKX+Z0nqjSL5KOZxtQXeCRZyAg2mYRvL71BueJW3TnQKvFyUoEczUH5qz+MSCKoNIRjrXueGxs/xcowwums1E80jTGZ4BHtWSqxoNpP57fO0JlVhiiMlC1p0Fz9PZFiofVUBLZTYDPWy14m/uf1EhPe+CmTcWKoJItFYcKRiVD2OBoyRYnhU0swUczeisgYK0yMjadkQ/CWX14l7VrVq1drD1eVxnkeRxFO4BQuwINraMA9NKEFBMbwDK/w5gjnxXl3PhatBSefOYY/cD5/ABfFjYY=</latexit>

a
=
�0
.75

<latexit sha1_base64="w3cl91RTSHh9h3evY5A1FryrSV0=">AAAB7nicbVBNSwMxEJ31s9avqkcvwaJ4cdmtSr0IBS8eK9gPaJeSTbNtaDYbkqxQlv4ILx4U8erv8ea/MW33oK0PBh7vzTAzL5ScaeN5387K6tr6xmZhq7i9s7u3Xzo4bOokVYQ2SMIT1Q6xppwJ2jDMcNqWiuI45LQVju6mfuuJKs0S8WjGkgYxHggWMYKNlVr49sJzq9e9UtlzvRnQMvFzUoYc9V7pq9tPSBpTYQjHWnd8T5ogw8owwumk2E01lZiM8IB2LBU4pjrIZudO0KlV+ihKlC1h0Ez9PZHhWOtxHNrOGJuhXvSm4n9eJzXRTZAxIVNDBZkvilKOTIKmv6M+U5QYPrYEE8XsrYgMscLE2ISKNgR/8eVl0qy4/qVbebgq187yOApwDCdwDj5UoQb3UIcGEBjBM7zCmyOdF+fd+Zi3rjj5zBH8gfP5A3IAjj0=</latexit>

a
=
0.5

<latexit sha1_base64="pJRzOlRf9PhedrqgYga2VWO+LYo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxaJ4CklV9CIUvHisYNpCG8pmu2mX7m7C7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMi1LOtPG8b2dldW19Y7O0Vd7e2d3brxwcNnWSKUIDkvBEtSOsKWeSBoYZTtupolhEnLai0d3Ubz1RpVkiH804paHAA8liRrCxUoBvPfeqV6l6rjcDWiZ+QapQoNGrfHX7CckElYZwrHXH91IT5lgZRjidlLuZpikmIzygHUslFlSH+ezYCTq1Sh/FibIlDZqpvydyLLQei8h2CmyGetGbiv95nczEN2HOZJoZKsl8UZxxZBI0/Rz1maLE8LElmChmb0VkiBUmxuZTtiH4iy8vk2bN9S/c2sNltX5WxFGCYziBc/DhGupwDw0IgACDZ3iFN0c6L8678zFvXXGKmSP4A+fzB44CjcU=</latexit>

a
=
�1

<latexit sha1_base64="giKf9I4rSLoaIJzZ7UbkRt5Tqe0=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbFi2W3FfQiFLx4rGA/oF1KNs22oUl2SbJCWfoXvHhQxKt/yJv/xmy7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHKX+Z0nqjSL5KOZxtQXeCRZyAg2mYRvL71BueJW3TnQKvFyUoEczUH5qz+MSCKoNIRjrXueGxs/xcowwums1E80jTGZ4BHtWSqxoNpP57fO0JlVhiiMlC1p0Fz9PZFiofVUBLZTYDPWy14m/uf1EhPe+CmTcWKoJItFYcKRiVD2OBoyRYnhU0swUczeisgYK0yMjadkQ/CWX14l7VrVq1drD1eVxnkeRxFO4BQuwINraMA9NKEFBMbwDK/w5gjnxXl3PhatBSefOYY/cD5/ABfFjYY=</latexit>

a = �0.75
<latexit sha1_base64="w3cl91RTSHh9h3evY5A1FryrSV0=">AAAB7nicbVBNSwMxEJ31s9avqkcvwaJ4cdmtSr0IBS8eK9gPaJeSTbNtaDYbkqxQlv4ILx4U8erv8ea/MW33oK0PBh7vzTAzL5ScaeN5387K6tr6xmZhq7i9s7u3Xzo4bOokVYQ2SMIT1Q6xppwJ2jDMcNqWiuI45LQVju6mfuuJKs0S8WjGkgYxHggWMYKNlVr49sJzq9e9UtlzvRnQMvFzUoYc9V7pq9tPSBpTYQjHWnd8T5ogw8owwumk2E01lZiM8IB2LBU4pjrIZudO0KlV+ihKlC1h0Ez9PZHhWOtxHNrOGJuhXvSm4n9eJzXRTZAxIVNDBZkvilKOTIKmv6M+U5QYPrYEE8XsrYgMscLE2ISKNgR/8eVl0qy4/qVbebgq187yOApwDCdwDj5UoQb3UIcGEBjBM7zCmyOdF+fd+Zi3rjj5zBH8gfP5A3IAjj0=</latexit>

. . .

. .
 .

Estimated from Pythia simulations:


