Angularities, gaps, and α_{s}

Christopher Lee (LANL)

with G. Bell, Y. Makris, J. Talbert, B. Yan, B. Yoon

A triumph for SCET

- First N3LL' resummed event shape distributions with state-of-the-art treatment of nonperturbative corrections, e.g.:

hep-ph/1006.3080

Make e+e-event shapes some of the most precise ways to determine α_{s}

An anomaly?

2020 PDG world average:
 .1179 +- . 0010

Thrust at $\mathrm{N}^{3} \mathrm{LL}$ with Power Corrections and a Precision Global Fit for $\alpha_{s}\left(m_{Z}\right)$

$$
\text { Riccardo Abbate, }{ }^{1} \text { Michael Fickinger, }{ }^{2} \text { André H. Hoang, }{ }^{3} \text { Vicent Mateu, }{ }^{3} \text { and Iain W. Stewart }{ }^{1}
$$

hep-ph/1006.3080

$$
\begin{aligned}
\alpha_{s}\left(m_{Z}\right) & =0.1135 \pm(0.0002)_{\exp } \\
& \pm(0.0005)_{\mathrm{hadr}} \pm(0.0009)_{\mathrm{pert}}
\end{aligned}
$$

A Precise Determination of α_{s} from the C-parameter Distribution André H. Hoang, ${ }^{1,2}$ Daniel W. Kolodrubetz, ${ }^{3}$ Vicent Mateu, ${ }^{1}$ and Iain W. Stewart ${ }^{3}$

hep-ph/1501.04111

- $\sim 4 \sigma$ anomaly?

August 2019
$\alpha_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{Z}}^{2}\right) 3$

2-parameter fits to PT/NP effects: break degeneracies

- In "tail" region, leading nonperturbative effect is a shift by $c_{e} \Omega_{1} / Q$

$\mathrm{e}^{+} \mathrm{e}^{-}$event shapes in SCET

- Consider Angularities, which can be defined in terms of the rapidity and P_{T} of a final state particle ' i ', with respect to the thrust axis:

IR safe for $a \in\{-\infty, 2\}$
$\mathrm{a}=-1$

$$
\tau_{a}=\frac{1}{Q} \sum_{i}\left|\mathbf{p}_{\perp}^{i}\right| e^{-\left|\eta_{i}\right|(1-a)}
$$

$$
a=-0.25
$$

$$
a=0<->~ ‘ T h r u s t ’
$$

$a=1<->$ 'Jet Broadening' (for us $a<1$)

- Leading nonperturbative shift is $\frac{2 \Omega_{1}}{Q(1-a)}$: changing a is like changing Q.

$\mathrm{e}^{+} \mathrm{e}^{-}$event shapes in SCET

- An all-order dijet factorization theorem for the observable is easily derived in SCET:

$$
d \sigma \sim H \cdot \mathcal{J} \otimes \mathcal{J} \otimes \mathcal{S} \quad \stackrel{\mathrm{RGE}}{\longleftrightarrow} \frac{d H\left(Q^{2}, \mu\right)}{d \ln \mu}=\left[2 \Gamma_{c u s p} \ln \left(\frac{Q^{2}}{\mu^{2}}\right)+4 \gamma_{H}\left(\alpha_{s}\right)\right] H\left(Q^{2}, \mu\right)
$$

- Evolving all scales to/from their 'natural' settings, one arrives at the resummed cross section:

$$
\begin{array}{rll}
\frac{\sigma_{\operatorname{sing}}\left(\tau_{a}\right)}{\sigma_{0}}= & e^{K\left(\mu, \mu_{H}, \mu_{J}, \mu_{S}\right)}\left(\frac{\mu_{H}}{Q}\right)^{\omega_{H}\left(\mu, \mu_{H}\right)}\left(\frac{\mu_{J}^{2-a}}{Q^{2-a} \tau_{a}}\right)^{2 \omega_{J}\left(\mu, \mu_{J}\right)}\left(\frac{\mu_{S}}{Q \tau_{a}}\right)^{\omega_{S}\left(\mu, \mu_{S}\right)} H\left(Q^{2}, \mu_{H}\right) & \mathcal{F}(\Omega)=\frac{e^{\gamma_{E} \Omega}}{\Gamma(-\Omega)} \\
& \times \widetilde{J}\left(\partial_{\Omega}+\ln \frac{\mu_{J}^{2-a}}{Q^{2-a} \tau_{a}}, \mu_{J}\right)^{2} \widetilde{S}\left(\partial_{\Omega}+\ln \frac{\mu_{S}}{Q \tau_{a}}, \mu_{S}\right) \times\left\{\begin{array}{lll}
\frac{1}{\tau_{a}} \mathcal{F}(\Omega) & \sigma=\frac{d \sigma}{d \tau_{a}} & \mathcal{G}(\Omega)=\frac{e^{\gamma_{E} \Omega}}{\Gamma(1-\Omega)}
\end{array}\right.
\end{array}
$$

- This predicts the singular component of the cross section. One must then match to QCD:

$$
\frac{\sigma_{c}\left(\tau_{a}\right)}{\sigma_{0}}-\frac{\sigma_{\mathrm{c}, \operatorname{sing}}\left(\tau_{a}\right)}{\sigma_{0}}=r_{c}\left(\tau_{a}\right)=\theta\left(\tau_{a}\right)\left\{\frac{\alpha_{s}(Q)}{2 \pi} r_{c}^{1}\left(\tau_{a}\right)+\left(\frac{\alpha_{s}(Q)}{2 \pi}\right)^{2} r_{c}^{2}\left(\tau_{a}\right)\right\}+\ldots
$$

- Additionally, a treatment of non-perturbative effects is critical in $e^{+} e^{-}->$hadrons...

New fixed-order computations

- Improved determination of 2-loop singular constants from extrapolation of EVENT2 predictions using quad precision
[see also next talk]

New remainder functions

- Preliminary results for 3-loop fixed-order angularity distributions from EERAD3 (IR cutoff $10^{-7}, 1.5 \times 10^{10}$ events)
- Unknown single log coefficient for nonzero a: extract from small τ_{a} region:

e.g. for $a=-1$:

- Finite remainder functions, e.g. $a=0$:

[^0]
Non-perturbative effects and gapped soft function

- When dominant power corrections come from the soft function, NP effects can be parameterized into a shape function $f_{\text {mod: }}$ 'Gap' parameter accounting for parton $->$ hadron acceptance

$$
S(k, \mu)=\int d k^{\prime} S_{\mathrm{PT}}\left(k-k^{\prime}, \mu\right) f_{\mathrm{mod}}\left(k^{\prime}-2 \frac{\downarrow}{\bar{\Delta}_{a}}\right) \quad f_{\bmod }(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{\infty} b_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2}
$$

$$
\begin{aligned}
& 9.3519] \\
& 7.102 \mathrm{kl}
\end{aligned}
$$

λ constrained by first moment of the shape function complete orthonormal basis

- However, both the perturbative soft function and gap parameter suffer renormalon ambiguities.

$$
\cdots 0 m=m+m \mathrm{Om}+\cdots \mathrm{m}+m+\ldots
$$

- $\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$ ambiguity in gap $\bar{\Delta}_{a}$
- Subtract a series with the same/canceling ambiguity from both PT and NP pieces:

$$
\bar{\Delta}_{a}=\Delta_{a}(\mu)+\delta_{a}(\mu) \quad \underset{\text { Laplace space }}{ } \quad \widetilde{S}(\nu, \mu)=\left[e^{-2 \nu \Delta_{a}(\mu)} \widetilde{f}_{\bmod }(\nu)\right]\left[e^{-2 \nu \delta_{a}(\mu)} \widetilde{S}_{\mathrm{PT}}(\nu, \mu)\right]
$$

$R_{\text {gap }}$ scheme

- Choosing the $\boldsymbol{R}_{\text {gap }}$ scheme to cancel the leading renormalon,

$$
\begin{gathered}
R e^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln \widehat{S}_{\mathrm{PT}}(\nu, \mu)\right]_{\nu=1 /\left(R e^{\gamma_{E}}\right)}=0 \quad \longrightarrow \quad \delta_{a}(\mu, R)=\frac{1}{2} R e^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln \widetilde{S}_{\mathrm{PT}}(\nu, \mu)\right]_{\nu=1 /\left(R e^{\gamma_{E}}\right)}, \\
\widehat{S}_{\mathrm{PT}}(\nu, \mu)=e^{-2 \nu \delta_{a}(\mu)} \widetilde{S}_{\mathrm{PT}}(\nu, \mu)
\end{gathered}
$$

Gapped and renormalon free soft function $S(k, \mu)=\int d k^{\prime} S_{\mathrm{PT}}\left(k-k^{\prime}, \mu\right)\left[e^{-2 \delta_{\alpha}(\mu, R) \frac{d}{d k^{\prime}}} f_{\bmod }\left(k^{\prime}-2 \Delta_{a}(\mu, R)\right)\right]$
Final cross section is expanded order-
by-order in bracketed term

$$
\frac{1}{\sigma_{0}} \sigma\left(\tau_{a}\right)=\int d k \sigma_{\mathrm{PT}}\left(\tau_{a}-\frac{k}{Q}\right)\left[e^{-2 \delta_{a}\left(\mu_{S}, R\right) \frac{d}{d k}} f_{\bmod }\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right]
$$

- Improves small τ_{a} behavior and perturbative convergence:

R-evolution

- Want to keep R near IR scales, but also avoid large logs $\ln \frac{\mu_{S}}{R}$ in subtraction terms
- but μ_{S} grows to be as large as Q :
- Sum logs by μ and R evolution: $\mu \frac{d}{d \mu} \Delta_{a}(\mu, R)=-\mu \frac{d}{d \mu} \delta_{a}(\mu, R) \equiv \gamma_{\Delta}^{\mu}\left[\alpha_{s}(\mu)\right]$

$$
\frac{d}{d R} \Delta_{a}(R, R)=-\frac{d}{d R} \delta_{a}(R, R) \equiv-\gamma_{R}\left[\alpha_{s}(R)\right]
$$

- Anomalous dimensions:

$$
\begin{aligned}
\gamma_{\Delta}^{\mu}\left[\alpha_{s}(\mu)\right] & =-R e^{\gamma_{E}} \Gamma_{S}\left[\alpha_{s}(\mu)\right] \\
\gamma_{R}\left[\alpha_{s}(R)\right] & =\sum_{n=0}^{\infty}\left(\frac{\alpha_{s}(R)}{4 \pi}\right)^{n+1} \gamma_{R}^{n} \quad \gamma_{R}^{0}=0, \quad \gamma_{R}^{1}=\frac{e^{\gamma_{E}}}{2}\left[\gamma_{S}^{1}(a)+2 c_{\widetilde{S}}^{1} \beta_{0}\right]
\end{aligned}
$$

τ_{0}.

Effective non-perturbative shifts

- Before considering gapped renormalons, the leading-order NP effect is a constant shift:

$$
\frac{d \sigma}{d \tau_{a}}\left(\tau_{a}\right) \underset{\mathrm{NP}}{\longrightarrow} \frac{d \sigma}{d \tau_{a}}\left(\tau_{a}-c_{\tau_{a}} \frac{\Omega_{1}}{Q}\right) \quad c_{\tau_{a}}=\frac{2}{1-a} \quad \Omega_{1}=\frac{1}{N_{C}} \operatorname{Tr}\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(0) Y_{n} \bar{Y}_{\bar{n}}|0\rangle
$$

Note: this is only valid in the tail region!

- Define an 'effective shift' of the distribution in the $R_{\text {gap }}$ scheme:

$$
\int d k k e^{-2 \delta_{a}\left(\mu_{S}, R\right) \frac{d}{d k}} f_{\bmod }\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)=\int d k k\left[\sum_{i} f_{\bmod }^{(i)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right] \equiv \frac{2}{1-a} \Omega_{1}^{\mathrm{eff}}
$$

- Shape function expanded order-by-order depending on logarithmic accuracy:

$$
\begin{aligned}
f_{\bmod }^{(0)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right) & =f_{\bmod }\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right), \\
f_{\bmod }^{(1)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right) & =-\frac{\alpha_{S}\left(\mu_{S}\right)}{4 \pi} 2 \delta_{a}^{1}\left(\mu_{S}, R\right) R e^{\gamma_{E}} f_{\bmod }^{\prime}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right), \\
f_{\bmod }^{(2)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right) & =\left(\frac{\alpha_{s}\left(\mu_{S}\right)}{4 \pi}\right)^{2}\left[-2 \delta_{a}^{2}\left(\mu_{S}, R\right) R e^{\gamma_{E}} f_{\bmod }^{\prime}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right. \\
& \left.\quad+2\left(\delta_{a}^{1}\left(\mu_{S}, R\right) R e^{\gamma_{E}}\right)^{2} f_{\bmod }^{\prime \prime}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right],
\end{aligned}
$$

Growing shifts

- Distributional shifts at NNLL' accuracy (central profile scales):

- Effectively, we shift the distribution to the right by larger amounts as we move from the 2-jet region out to the multi-jet tail. What might be the effect on extracting α_{s} ?

A scheme to limit the growth of the shift

- Can we find a way to cut off the growth of this shift? i.e. turn off R-evolution above some $\tau=\tau_{\text {max }}$:

$$
\gamma_{R} \rightarrow \theta\left(R_{\max }-R\right) \gamma_{R} \quad R=R(\tau)
$$

$$
\begin{array}{ll}
\text { need: } & \frac{d}{d R} \delta_{a}(R, R)=\gamma_{R}\left[\alpha_{s}(R)\right] \theta\left(R_{\max }-R\right) \\
\text { recall: } & \delta_{a}(R, R)=R e^{\gamma_{E}}\left[\frac{\alpha_{s}(R)}{4 \pi} \delta_{a}^{1}(R, R)+\left(\frac{\alpha_{s}(R)}{4 \pi}\right)^{2} \delta_{a}^{2}(R, R)+\cdots\right]
\end{array}
$$

to the order we need, just change the R in front to:

$$
R^{*} \equiv \begin{cases}R & R<R_{\max } \\ R_{\max } & R \geq R_{\max }\end{cases}
$$

$$
\delta_{a}^{1}(\mu, R)=\Gamma_{S}^{0} \ln \frac{\mu}{R},
$$

A scheme to limit the growth of the shift

" R * scheme"

$$
\delta_{a}^{*}(\mu, R)=\frac{1}{2} R^{*} e^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln S_{\mathrm{PT}}(\nu, \mu)\right]_{\nu=1 /\left(R^{\gamma E}\right)}
$$

To the order we work: $\quad \frac{d}{d R} \delta_{a}^{*}(R, R)=\theta\left(R_{\max }-R\right) e^{\gamma_{E}} \delta_{a}(R, R)+\mathcal{O}\left(\alpha_{s}^{3}\right)$

$$
\text { R-evolution: } \quad \gamma_{R}^{*}=\theta\left(R_{\max }-R\right) e^{\gamma_{E}}\left[\frac{\alpha_{s}(R)}{4 \pi} \cdot 0+\left(\frac{\alpha_{s}(R)}{4 \pi}\right)^{2} \gamma_{R}^{1}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right]
$$

μ-evolution: $\quad \gamma_{\Delta}\left[\alpha_{s}(\mu)\right]=-R^{*} e^{\gamma_{E}} \Gamma_{S}\left[\alpha_{s}(\mu)\right]$

- Nothing fancy. Just one way to freeze growth of effective shift for large τ_{a} in event shapes.

Frozen shifts

R vs R^{*} profiles

- In our results, we let R^{\star} grow until we hit $\tau_{a}=t_{1}(a)$, where we finish transitioning from "shape function" region to "resummation region" in profile functions:

R

$$
\mathrm{R}^{*}(\operatorname{Rmax}
$$

$$
=R(t 1))
$$

soft

- Different $R_{\max }$ values are probed in tandem with variation of the t_{1} profile parameter

Convergence in R vs R^{\star} schemes

$$
Q=M_{z}, a=0.25
$$

$R_{\text {gap }}$ scheme:

Convergence in R vs R^{\star} schemes

 $Q=M_{z}, a=-0.5$$R_{\text {gap }}$ scheme:

Effect on thrust fits $\left[\mathbb{N N L L +}+\left(a_{2}^{2}\right)\right]$

$[6 / Q, 0.33]_{516}$: Our fit (R scheme)

Effect on thrust fits

$[6 / Q, 0.33]_{516}$: Our fit (R scheme)
$[6 / Q, 0.33]_{516}$: Our fit (R^{*} scheme)

Effect on thrust fits ${ }^{\left[N N L L+\epsilon\left(a a_{3}^{2}\right)\right]}$

$[6 / Q, 0.33]_{516}$: Our fit (R scheme) $[6 / Q, 0.33]_{516}:$ Our fit (R^{*} scheme)
$[6 / Q, 0.33]_{487}:$ AFHMS (R scheme)
green -> red : several other systematics, e.g. profile functions, no b-mass or QED corrections (for us),
slightly different data sets/bins, scale setting in bins...

Effect on angularity fits (all a) NNuL+a(3))

small ellipses: experimental error larger ellipses: theory error
shaded: combined error

Effect on angularity fits (single a's) $\left[\right.$ NNLL $+6\left(a, a^{2}\right)$

$$
a=-1
$$

$a=-0.5$

$$
a=0
$$

Consistent shift from using R^{*}

- There are still lots of systematics to consider: fitting regions, choice of profile functions, data sets, scale choice inside bins, etc. Our illustrations are based on NNLL'+ $\mathcal{O}\left(\alpha_{s}^{2}\right)$ predictions only, so far.
- You (and we!) are not allowed to quote a value of α_{s} or Ω_{1} coming from this talk!!
- What seems consistent is, when controlling on other systematic choices, a shift in α_{s} of about a few percent when switching from standard $R_{\text {gap }}$ to R^{*} scheme.
- Shifted values are within uncertainties, but might alleviate tension with PDG value.
- Similar conclusion, from different considerations, as G. Luisoni, P. Monni, G. Salam [2012.00622] who tried varying size of nonperturbative shift in C-parameter distribution as function of C (smaller shifts for large $C \Rightarrow$ larger values of α_{s} by a few percent)

Backups

New remainder functions from EERAD3

Effect of scale setting \& R-scheme on angularity fits

α_{s}

α_{s}

α_{s}

- "midpoint" scales

$$
\sigma_{\mathrm{bin}}^{i}=\sigma_{c}\left(\tau_{i+1}, \mu_{J, S}\left(\tau_{\mathrm{mid}}\right)\right)-\sigma_{c}\left(\tau_{i}, \mu_{J, S}\left(\tau_{\mathrm{mid}}\right)\right)
$$

may not preserve total cross section (cf. 1401.4460)

- "endpoint" scales

$$
\sigma_{\text {bin }}^{i}=\sigma_{c}\left(\tau_{i+1}, \mu_{J, S}\left(\tau_{i+1}\right)\right)-\sigma_{c}\left(\tau_{i}, \mu_{J, S}\left(\tau_{i}\right)\right)
$$

"spurious" uncertainties (cf. 1006.3080)

- worth exploring "total integral"-preserving scale profiles of Bertolini, Solon, Walsh [1701.07919]

Data sets

-For thrust:

ALEPH-2004: 133. GeV (7) ALEPH-2004: 161. GeV (7) ALEPH-2004: 172. GeV (7) ALEPH-2004: 183. GeV (7) ALEPH-2004: 189. GeV (7) ALEPH-2004: 200. GeV (6) ALEPH-2004: 206. GeV (8) ALEPH-2004: 91.2 GeV (26) AMY-1990: 55.2 GeV (5) DELPHI-1999: 133. GeV (7) DELPHI-1999: 161. GeV (7) DELPHI-1999: 172. GeV (7) DELPHI-1999: 89.5 GeV (11) DELPHI 190: 93. GeV (12) L3-2004: 91.2 GeV (10) DELPHI 199: 93. GeV (12) OPAL-1997: 161. GeV (7 DELPHI-2000: 91.2 GeV (12) OPAL-2000: 172. GeV (8) DELPHI-2003: 183. GeV (14) OPAL-2000: 183. GeV (8) DELPHI-2003: 189. GeV (15) OPAL-2000: 189. GeV 8 DELPHI-2003: 192. GeV (15) OPAL-2005: 133. GeV (6 DELPHI-2003: 196. GeV (14) OPAL-2005: 177. GeV (8) DELPHI-2003: 200. GeV (15) OPAL-2005: 197. GeV (8) DELPHI-2003: 202. GeV (15) OPAL-2005: 91. GeV (5) DELPHI-2003: 205. GeV (15) SLD-1995: 91.2 GeV (6) DELPHI-2003: 207. GeV (15) TASSO-1998: 35. GeV (4) DELPHI-2003: 45. GeV (5) TASSO-1998: 44. GeV (5) DELPHI-2003: 66. GeV (8) DELPHI-2003: 76. GeV (9) JADE-1998: 35. GeV (5) JADE-1998: 44. GeV (7) L3-2004: 130.1 GeV (11) L3-2004: 136.1 GeV (10) L3-2004: 161.3 GeV (12)
 L3-2004: 182.8 GeV (12) L3-2004: 188.6 GeV (12) L3-2004: 194.4 GeV (12) L3-2004: 200. GeV (11) L3-2004: 206.2 GeV (12) L3-2004: 41.4 GeV (5) L3-2004: 55.3 GeV (6) L3-2004: 65.4 GeV (7) L3-2004: 65.4 GeV (7) L3-2004: 75.7 GeV (7) L3-2004: 82.3 GeV (8) -2004: 85.1 GeV (8) PAL-1997: 161. GeV (7) (8)
(8) 8)
8)
 (4)
(5)
------ Summary -------

Q > 95:345
$\mathrm{Q}<88: 89$
Q ~ MZ : 82

-For angularities:

Generalized event shape and energy flow studies in

 $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation at $\sqrt{s}=91.2-208.0 \mathrm{GeV}$L3 Collaboration

JHEP 10 (2011) 143

Also see thesis by Pratima Jindal, Panjab University, Chandigarh

- Data for $\mathrm{a}=\{-1.0,-0.75 .-0.5,-0.25,0.0,0.25,0.5,0.75\}$ at 91.2 and 197 GeV
- Total number of bins $=($ bins per a) $\times($ number of $a)=25 \times 7=175$ bins $@ \mathrm{Q}=91.2 \mathrm{GeV}$
- e.g. $\mathrm{a}=-1$ and $0.5, \mathrm{Q}=91.2 \mathrm{GeV}$, compared to our NNLL' prediction:

Fitting regions currently used

- For all-angularity fit:

-For single-angularity fits:

Shift in distributions

- from $R_{\text {gap }}$ to R^{*} scheme, are actually quite small:

- Note these shifts will also grow for larger Q

Correlations among angularities

Estimated from Pythia simulations:

[^0]: - (3-loop results not yet included in cross section predictions presented in this talk)

