The Higgs p_T Spectrum and Total Cross Section with Fiducial Cuts at N³LL'+N³LO

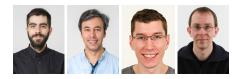
Johannes Michel MIT CTP

World SCET 2021 19 April

The Higgs p_T Spectrum and Total Cross Section with Fiducial Cuts at N³LL'+N³LO

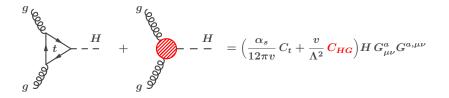
based on [2102.08039]

in collaboration with G. Billis, B. Dehnadi, M. Ebert, F. Tackmann



Motivation

- Measure fiducial & differential Higgs cross sections at the LHC
 - Most model-independent way we have to search for BSM in the Higgs sector



Motivation

- Measure fiducial & differential Higgs cross sections at the LHC
 - Most model-independent way we have to search for BSM in the Higgs sector

	Individual			Marginalised		
SMEFT	Best fit	95% CL	Scale	Best fit	95% CL	Scale
Coeff.	$[\Lambda = 1 \text{ TeV}]$	range	$\frac{\Lambda}{\sqrt{C}}$ [TeV]	$[\Lambda = 1 \text{ TeV}]$	range	$\frac{\Lambda}{\sqrt{C}}$ [TeV]
C_{Hq}	0.00	[-0.017, +0.012]	8.3	-0.05	[-0.11, +0.012]	4.1
$C_{Hq} = C_{Hq} = C_{Hq}^{(1)}$	0.02	[-0.1, +0.14]	2.9	-0.04	[-0.27, +0.18]	2.1
C_{Hd}	-0.03	[-0.13, +0.071]	3.1	-0.39	[-0.91, +0.13]	1.4
C_{Hu}	0.00	[-0.075, +0.073]	3.7	-0.19	[-0.63, +0.25]	1.5
$C_{H\square}$	-0.27	[-1, +0.47]	1.2	-0.9	[-3, +1.2]	0.69
C_{HG}	0.00	[-0.0034, +0.0032]	17.0	0.00	[-0.014, +0.0086]	9.4
C_{HW}	0.00	[-0.012, +0.006]	11.0	0.12	[-0.38, +0.62]	1.4
C_{HB}	0.00	[-0.0034, +0.002]	19.0	0.07	[-0.09, +0.22]	2.5

[Ellis, Madigan, Mimasu, Sanz, You, 2012.02779; Tab. 6]

Motivation

- Measure fiducial & differential Higgs cross sections at the LHC
 - Most model-independent way we have to search for BSM in the Higgs sector
- Uncertainty $\Delta \sigma$ on SM prediction translates into discovery reach:

$$rac{\Delta\sigma}{\sigma} \sim rac{v^2}{\Lambda_{
m BSM}^2} ~~\Leftrightarrow~~ \Lambda_{
m BSM} \sim v\,\sqrt{rac{\sigma}{\Delta\sigma}}$$

Challenges for theory

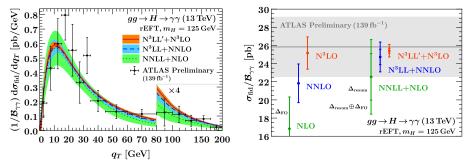
- QCD corrections to gg
 ightarrow H are large: $\sigma/\sigma_{
 m LO} pprox 3$
 - Calculation of inclusive cross section has been pushed to N³LO [Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger '15-'18]
- But LHC experiments apply kinematic selection cuts on Higgs decay products
 - Need complete interplay of QCD corrections and $\mathcal{O}(1)$ fiducial acceptance

Consider $H
ightarrow \gamma \gamma$ with ATLAS fiducial cuts:

 $p_T^{\gamma 1} \geq 0.35 \, m_H \,, \quad p_T^{\gamma 2} \geq 0.25 \, m_H \,, \quad |\eta^\gamma| \leq 2.37 \,, \quad |\eta^\gamma|
otin [1.37, 1.52]$

Goal

- Compute fiducial spectrum in $q_T\equiv p_T^H=p_T^{\gamma\gamma}$ at N³LL'+N³LO
- Compute total fiducial cross section at N³LO, and improved by resummation



Consider $H
ightarrow \gamma \gamma$ with ATLAS fiducial cuts:

 $p_T^{\gamma 1} \geq 0.35 \, m_H \,, \quad p_T^{\gamma 2} \geq 0.25 \, m_H \,, \quad |\eta^\gamma| \leq 2.37 \,, \quad |\eta^\gamma|
otin [1.37, 1.52]$

Goal

- Compute fiducial spectrum in $q_T\equiv p_T^{H}=p_T^{\gamma\gamma}$ at N³LL'+N³LO
- Compute total fiducial cross section at N³LO, and improved by resummation
- Previous state of the art was N³LL(+NNLO₁) and NNLO, respectively [Chen et al. '18; Bizoń et al. '18; Gutierrez-Reyes et al. '19; Becher, Neumann '20]

Kicked off recent push for fiducial color singlet at complete three-loop accuracy:

- Complementary N³LO results for fiducial $Y_{\gamma\gamma}$, $\eta_{\gamma1}$, $\Delta\eta_{\gamma\gamma}$ (with different method) [Chen, Gehrmann, Glover, Huss, Mistlberger, 2102.07607]
- Fiducial N³LL' results for Drell-Yan (and Higgs) q_T spectrum [Camarda, Cieri, Ferrera, 2103.04974; Re, Rottoli, Torrielli, 2104.07509]

Consider $H
ightarrow \gamma \gamma$ with ATLAS fiducial cuts:

 $p_T^{\gamma 1} \geq 0.35 \, m_H \,, \quad p_T^{\gamma 2} \geq 0.25 \, m_H \,, \quad |\eta^\gamma| \leq 2.37 \,, \quad |\eta^\gamma|
otin [1.37, 1.52]$

Goal

- Compute fiducial spectrum in $q_T\equiv p_T^{H}=p_T^{\gamma\gamma}$ at N³LL'+N³LO
- Compute total fiducial cross section at N³LO, and improved by resummation

 $\Gamma_H \ll m_H \Rightarrow$ production and decay (acceptance) factorize point by point in q_T, Y :

$$rac{\mathrm{d}\sigma}{\mathrm{d}q_T} = \int \mathrm{d}Y \, oldsymbol{A}(oldsymbol{q_T},oldsymbol{Y};oldsymbol{\Theta}) \, W(oldsymbol{q_T},Y) \,, \quad oldsymbol{A}_{\mathrm{incl}} = 1 \,, \quad W(oldsymbol{q_T},Y) = rac{\mathrm{d}\sigma_{\mathrm{incl}}}{\mathrm{d}q_T \, \mathrm{d}Y}$$

Takeaway

 $\sigma_{\text{incl}} = \int dq_T W(q_T)$ resummation effects formally cancel under q_T integral $\sigma_{\text{fid}} = \int dq_T A(q_T) W(q_T)$ derived quantity sensitive to resummation effects

Outline

$$egin{array}{ll} rac{\mathrm{d}\sigma}{\mathrm{d}q_T} = & rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}q_T} + & rac{\mathrm{d}\sigma^{(1)}}{\mathrm{d}q_T} + & rac{\mathrm{d}\sigma^{(2)}}{\mathrm{d}q_T} + & \cdots \ & \sim rac{1}{q_T} iggl[\ \mathcal{O}(1) + \mathcal{O}\Bigl(rac{q_T}{m_H}\Bigr) + \mathcal{O}\Bigl(rac{q_T^2}{m_H^2}\Bigr) + \ \cdots \Bigr] \end{array}$$

(0) Implementing the N^3LL' cross section

(1) Treating fiducial power corrections right

(2) Extracting the nonsingular cross section

Implementing the N³LL' cross section

Leading-power hadronic dynamics factorize as:

$$egin{aligned} W^{(0)}(q_T,Y) &= m{H}(m{m}_H^2,m{\mu}) \int\!\mathrm{d}^2ec{k}_a\,\mathrm{d}^2ec{k}_b\,\mathrm{d}^2ec{k}_s\,\deltaig(q_T - |ec{k}_a + ec{k}_b + ec{k}_s|ig) \ & imes B_g^{\mu
u}(x_a,ec{k}_a,m{\mu},m{
u})\,B_{g\,\mu
u}(x_b,ec{k}_b,m{\mu},m{
u})\,m{S}(ec{k}_s,m{\mu},m{
u}) \end{aligned}$$

To reach $N^{3}LL'$ for $W^{(0)}$, implemented in SCETlib:

- Three-loop soft and hard function ...includes in particular the three-loop virtual form factor [Li, Zhu, '16] [Baikov et al. '09; Lee et al. '10; Gehrmann et al. '10]
- Three-loop unpolarized and two-loop polarized beam functions [Ebert, Mistlberger, Vita '20; Luo, Yang, Zhu, Zhu '20] [Luo, Yang, Zhu, Zhu '19; Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov '19]
- Four-loop cusp, three-loop noncusp anomalous dimensions [Brüser, Grozin, Henn, Stahlhofen '19; Henn, Korchemsky, Mistlberger '20; v. Manteuffel, Panzer, Schabinger '20] [Li, Zhu, '16; Moch, Vermaseren, Vogt '05; Idilbi, Ma, Yuan '06; Vladimirov '16]
- N³LL solutions to virtuality/rapidity RGEs in b_T space
- Hybrid profile scales for fixed-order matching [Lustermans, JM, Tackmann, Waalewijn '19]

Leading-power hadronic dynamics factorize as:

$$egin{aligned} W^{(0)}(q_T,Y) &= m{H}(m{m}_H^2,\mu) \int\!\mathrm{d}^2ec{k}_a\,\mathrm{d}^2ec{k}_b\,\mathrm{d}^2ec{k}_s\,\deltaig(q_T-ec{k}_a+ec{k}_b+ec{k}_sec{ec{k}}ig) \ & imes B_g^{\mu
u}(x_a,ec{k}_a,\mu,
u)\,B_{g\,\mu
u}(x_b,ec{k}_b,\mu,
u)\,m{S}(ec{k}_s,\mu,
u) \end{aligned}$$

• Use $\mu_{
m FO} = \mu_R = \mu_F = m_H$ for central predictions

- Higgs cross section also contains large timelike logarithms $\ln {-m_H^2 {
 m i0}\over \mu^2}$ [Ahrens, Becher, Neubert, Yang '08]
- Resummed by hard evolution from $\mu_H = -im_H$:

$$W(q_T, Y) = H(m_H^2, \mu_H) U_H(Q, \mu_H, \mu_{\rm FO}) \left[\frac{W(q_T, Y)}{H(m_H^2, \mu_{\rm FO})} \right]_{\rm FO}$$

[Ebert, JM, Tackmann '17]

Efficient evaluation of beam function finite terms in SCETlib

• Beam function kernels are large expressions of HPLs and rational prefactors:

- Many tools for numerically evaluating *individual* HPLs on the market ... [e.g. Gehrmann, Remiddi '01; Buehler, Duhr '11; Ablinger, Blümlein, Round, Schneider '18]
- ! But big sum is slow and has uncontrolled floating-point cancellations, in particular in limits $z \to 0, 1$ relevant for convolution $I_{ij}^{(n)} \otimes f_j$ against PDFs

Key idea

Implement the kernels *directly* as smart series expansions, using algebraic methods inspired by those developed for individual HPLs

- Separate branch cuts by subtractions

 Much more complex due to rational terms
 Treat Q_a(z) as additional primitives

 Remap variables, push out remaining branch cut

 Improves convergence radii of series
 - Get $I_{ij}^{(3)}, P_{ij}^{(2)}, \ldots$ at machine precision in $\mathcal{O}(50k)$ cycles for any z, ≥ 100 times faster than naive implementation (and much more precise)

12

Treating fiducial power corrections right

 \ldots are all the power corrections from the q_T -dependent acceptance:

$$rac{\mathrm{d}\sigma^{\mathrm{fpc}}}{\mathrm{d}q_T} \equiv \int \mathrm{d}Y \Big[oldsymbol{A}(oldsymbol{q_T},oldsymbol{Y};oldsymbol{\Theta}) - oldsymbol{A}^{(0)}(oldsymbol{Y};oldsymbol{\Theta}) \Big] W^{(0)}(oldsymbol{q_T},oldsymbol{Y})$$

• Contain all linear power corrections $\mathrm{d}\sigma^{(1)}$ because

$$egin{aligned} W(q_T,Y) &= W^{(0)}(q_T,Y) \Big[1 + \mathcal{O}\Big(rac{q_T^2}{m_H^2}\Big) \Big] \ A(q_T,Y;m{\Theta}) &= A^{(0)}(Y;m{\Theta}) \ \left[1 + \mathcal{O}\Big(rac{q_T}{m_H}\Big)
ight] \end{aligned}$$

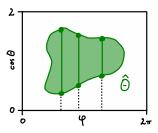
- Also capture enhanced corrections $\sim q_T/p_L$ when approaching edges $p_L o 0$ of Born phase space ... example coming up
- Resummed to the same accuracy as leading-power terms by resumming $W^{(0)}$ and keeping exact $A(q_T,Y;\Theta)$

[Presence of linear terms pointed out in Ebert, Tackmann '20] [Factorization demonstrated in Ebert, JM, Stewart, Tackmann '20; see talk by M. Ebert at SCET 2020] \ldots relies on fast & stable (for $q_T
ightarrow 0$) algorithm for evaluating the acceptance:

$$A(q_T,Y;\Theta) = rac{1}{4\pi}\int\!\mathrm{d}\cos heta\,\mathrm{d}arphi\,\hat{\Theta}(q^\mu,\cos heta,arphi)$$

• $\hat{\Theta}(q_T = 0, Y, \cos \theta, \mathscr{P})$ is trivial

• For $q_T \neq 0$, analytically solve generic $\hat{\Theta}$ for bounds in θ at given q_T, Y, φ



 Do remaining 1D integral over φ adaptively

Ruth doing 1
ightarrow 2 decay PS at rest.

 Takes O(1 ms) on 2.50 GHz CPU for 10⁻⁷ target precision

Resummation effects in the total cross section

Key point

Fiducial power corrections induce resummation effects in the total xsec.

Compare fixed-order series:

$$\begin{split} \sigma_{\rm fnol}^{\rm FO} &= 13.80 \left[1 + 1.291 \right. + 0.783 \left. + 0.299\right] \rm pb \\ \sigma_{\rm fid}^{\rm FO} &= 6.928 \left[1 + 1.429 \right. + 0.723 \left. + 0.481\right] \rm pb \\ &= 6.928 \left[1 + (1.300 + 0.129_{\rm fpc}) + (0.784 - 0.061_{\rm fpc}) + (0.331 + 0.150_{\rm fpc})\right] \rm pb \end{split}$$

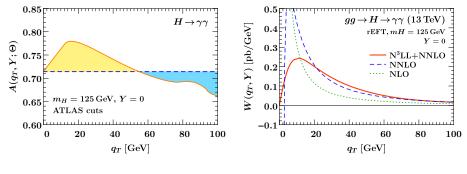
Fiducial power corrections show no convergence, remainder is similar to inclusive

Key point

Fiducial power corrections induce resummation effects in the total xsec.

Two ways to understand this:

1. Acceptance acts as a weight in the q_T integral.



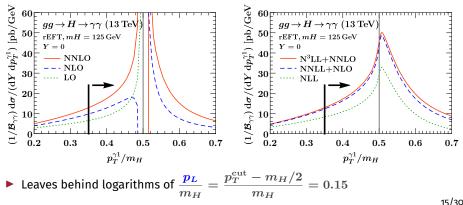
 $\sigma_{
m incl} = \int \mathrm{d} q_T \, W(q_T) \qquad \sigma_{
m fid} = \int \mathrm{d} q_T \, \pmb{A}(\pmb{q_T}) \, W(q_T)$

Key point

Fiducial power corrections induce resummation effects in the total xsec.

Two ways to understand this:

- 1. Acceptance acts as a weight in the q_T integral.
- 2. We're cutting on the resummation-sensitive photon p_T .



Key point

Fiducial power corrections induce resummation effects in the total xsec.

Compare fixed-order series, isolating effect of
$$\int dq_T \frac{d\sigma^{fpc}}{dq_T}$$
:

- $$\begin{split} \sigma^{\rm FO}_{\rm incl} &= 13.80 \left[1+1.291 \right. \\ &+ 0.783 \right. \\ &+ 0.299 \left] \, {\rm pb} \\ \sigma^{\rm FO}_{\rm fid} &= 6.928 \left[1+1.429 \right. \\ &+ 0.723 \right. \\ &+ 0.481 \left] \, {\rm pb} \\ &= 6.928 \left[1+(1.300+0.129_{\rm fpc}) + (0.784-0.061_{\rm fpc}) + (0.331+0.150_{\rm fpc})\right] \, {\rm pb} \end{split}$$
 - Fiducial power corrections show no convergence, remainder is similar to inclusive

After resummation of $\sigma^{(0)} + \sigma^{
m fpc}$, at successive matched orders:

$$\sigma_{
m incl}^{
m res} = 24.16 \left[1 + 0.756 + 0.207 + 0.024\right]
m pb$$

 $\sigma_{
m fid}^{
m res} = 12.89 \left[1 + 0.749 + 0.171 + 0.053\right]
m pb$

Note Checked explicitly that for our profile scale setup, σ_{incl}^{res} and σ_{incl}^{FO} agree within Δ_{resum}

▶ Differ in the fiducial case ⇒ resummation effect is resolved

Extracting the nonsingular cross section

So we dealt with this ...

$$rac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}q_T} = \int\!\mathrm{d}Y\,A(q_T,Y;\Theta)\,W^{(0)}(q_T,Y) = rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}q_T} + rac{\mathrm{d}\sigma^{\mathrm{fpc}}}{\mathrm{d}q_T}$$

To match to FO and be able to integrate to the total cross section, we still need:

$$\frac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{nons}}}{\mathrm{d}q_T} = \int \mathrm{d}Y \, \boldsymbol{A}(\boldsymbol{q_T},\boldsymbol{Y};\boldsymbol{\Theta}) \left[W_{\mathrm{FO}}^{(2)}(\boldsymbol{q_T},\boldsymbol{Y}) + \cdots \right] = \left[\frac{\mathrm{d}\sigma_{\mathrm{FO}_1}}{\mathrm{d}q_T} - \frac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{sing}}}{\mathrm{d}q_T} \right]_{q_T > 0}$$

Challenges:

- Obtaining stable H+1j results for $q_T
 ightarrow 0$ is hard ...in particular at <code>NNLO1</code>
- ullet Dropping the nonsingular below $q_T \leq q_T^{ ext{cut}}$ is not viable, either ...as we'll see shortly
 - In the context of q_T subtractions: crucial to use differential subtraction, not slicing

So we dealt with this ...

$$rac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}q_T} = \int\!\mathrm{d}Y\,A(q_T,Y;\Theta)\,W^{(0)}(q_T,Y) = rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}q_T} + rac{\mathrm{d}\sigma^{\mathrm{fpc}}}{\mathrm{d}q_T}$$

To match to FO and be able to integrate to the total cross section, we still need:

$$rac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{nons}}}{\mathrm{d}q_T} = \int \mathrm{d}Y \, A(q_T, Y; \Theta) \left[W_{\mathrm{FO}}^{(2)}(q_T, Y) + \cdots
ight] = \left[rac{\mathrm{d}\sigma_{\mathrm{FO}_1}}{\mathrm{d}q_T} - rac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{sing}}}{\mathrm{d}q_T}
ight]_{q_T > 0}$$

Key idea

Fit nonsingular data to known form at subleading power and integrate analytically:

$$\left. q_T \frac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{nons}}}{\mathrm{d}q_T} \right|_{lpha_s^n} = \left. \frac{q_T^2}{m_H^2} \sum_{k=0}^{2n-1} \! \left(a_k + b_k \frac{q_T}{m_H} + c_k \frac{q_T^2}{m_H^2} + \cdots \right) \ln^k \! \frac{q_T^2}{m_H^2}
ight.$$

- Include higher-power b_k, c_k to get unbiased a_k
- Allows us to use more precise data at higher q_T as lever arm in the fit

So we dealt with this ...

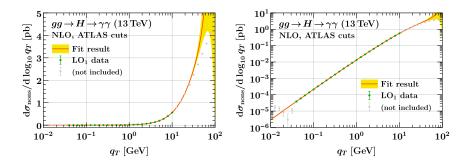
$$rac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}q_T} = \int\!\mathrm{d}Y\,A(q_T,Y;\Theta)\,W^{(0)}(q_T,Y) = rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}q_T} + rac{\mathrm{d}\sigma^{\mathrm{fpc}}}{\mathrm{d}q_T}$$

To match to FO and be able to integrate to the total cross section, we still need:

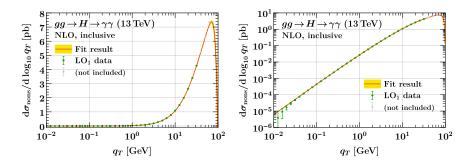
$$\frac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{nons}}}{\mathrm{d}q_T} = \int \mathrm{d}Y \, \boldsymbol{A}(\boldsymbol{q_T},\boldsymbol{Y};\boldsymbol{\Theta}) \left[W_{\mathrm{FO}}^{(2)}(\boldsymbol{q_T},\boldsymbol{Y}) + \cdots \right] = \left[\frac{\mathrm{d}\sigma_{\mathrm{FO}_1}}{\mathrm{d}q_T} - \frac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{sing}}}{\mathrm{d}q_T} \right]_{q_T > 0}$$

Fixed-order inputs:

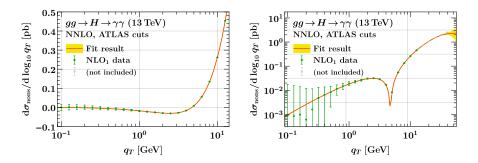
- NLO contribution to $W(q_T, Y)$ at $q_T > 0$ is easy
- At NNLO, renormalize & implement bare analytic results for $W(q_T, Y)$ [Dulat, Lionetti, Mistlberger, Pelloni, Specchia '17]
- At N³LO, use existing binned NNLO₁ results from NNLOjet [Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier '15-16; as used in Chen et al. '18; Bizoń et al. '18]
- Use N³LO total inclusive cross section as additional fit constraint on underflow [Mistlberger '18]



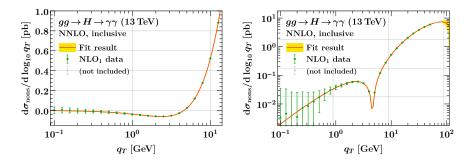
- Perform separate χ^2 fits of $\{a_k^{\text{incl,fid}}\}$ to inclusive and fiducial nonsingular data [generated by our analytic implementation]
- Increase fit window to larger q_T until p value decreases
- Include subleading log coefficients at next higher power until p value decreases
- Also test intermediate combination to ensure fit is stable [procedure follows Moult, Rothen, Stewart, Tackmann, Zhu '15-'16]



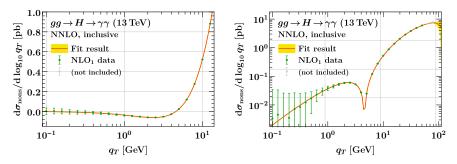
- Perform separate χ^2 fits of $\{a_k^{\text{incl,fid}}\}$ to inclusive and fiducial nonsingular data [generated by our analytic implementation]
- Increase fit window to larger q_T until p value decreases
- Include subleading log coefficients at next higher power until p value decreases
- Also test intermediate combination to ensure fit is stable [procedure follows Moult, Rothen, Stewart, Tackmann, Zhu '15-'16]



- Perform separate χ^2 fits of $\{a_k^{\text{incl,fid}}\}$ to inclusive and fiducial nonsingular data [generated by our analytic implementation]
- Increase fit window to larger q_T until p value decreases
- Include subleading log coefficients at next higher power until p value decreases
- Also test intermediate combination to ensure fit is stable [procedure follows Moult, Rothen, Stewart, Tackmann, Zhu '15-'16]



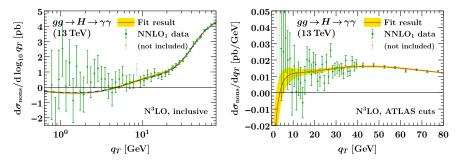
- Perform separate χ^2 fits of $\{a_k^{\text{incl,fid}}\}$ to inclusive and fiducial nonsingular data [generated by our analytic implementation]
- Increase fit window to larger q_T until p value decreases
- Include subleading log coefficients at next higher power until p value decreases
- Also test intermediate combination to ensure fit is stable [procedure follows Moult, Rothen, Stewart, Tackmann, Zhu '15-'16]



• Check the purely hadronic a_k^{fid} by directly fitting them to

$$q_T \int \mathrm{d}Y \, A^{(\mathbf{0})}(Y;\Theta) ig[W-W^{(0)}ig] = rac{q_T^2}{m_H^2} \sum_{k=0}^{2n-1} \Bigl(a_k^{\mathrm{fid}} + c_k' rac{q_T}{m_H^2} + \cdots \Bigr) \ln^k rac{q_T^2}{m_H^2} \, \checkmark$$

- Recover analytic (N)NLO coefficient of $\sigma_{
 m incl}$ at 10^{-5} (10^{-4}) 🗸
- Analytic implementation gives us awesome precision on all NLP coefficients (all logs at NLO and NNLO, also differential in Y, broken down by color structure, ...)
 - \blacktriangleright Can serve as benchmark for q_T factorization & resummation of $W^{(2)}$



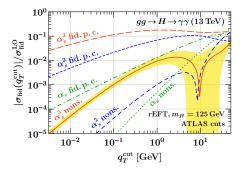
Setup:

- Perform a combined fit to all inclusive and fiducial data
 [NNLO1: Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier '15-16; as used in Chen et al. '18; Bizoń et al. '18]

 [Incl. N³LO: Mistlberger '18]
- Empirically find $0.4 \leq a_k^{
 m fid}/a_k^{
 m incl} \leq 0.55$ at (N)NLO \Rightarrow use as weak 1σ constraint
 - Makes sense, $a_k^{\mathrm{fid,incl}}$ are same underlying $W^{(2)}$ in slightly different Y range
 - Note that we are not just rescaling any part of the cross section by an acceptance

• Add
$$\sigma_{\text{incl}}(q_T \leq q_T^{\text{cut}}) = \sigma_{\text{incl}}^{\text{N}^3\text{LO}} - \sigma_{\text{incl}}(q_T > q_T^{\text{cut}})$$
 as additional incl. data point ^{25/3C}

This is not a slicing calculation

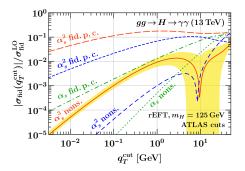


Most general form of q_T subtractions:

$$\sigma = \sigma^{\text{sing}}(\boldsymbol{q}_T^{\text{off}}) + \sigma^{\text{nons}}(\boldsymbol{q}_T^{\text{cut}}) + \int_{\boldsymbol{q}_T^{\text{cut}}}^{\boldsymbol{q}_T^{\text{off}}} \mathrm{d}q_T \left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T} - \frac{\mathrm{d}\sigma^{\text{sing}}}{\mathrm{d}q_T}\right] + \int_{\boldsymbol{q}_T^{\text{off}}} \mathrm{d}q_T \frac{\mathrm{d}\sigma}{\mathrm{d}q_T}$$

- We literally take $q_T^{\text{cut}} = 0$, second term *identically* vanishes
- Slicing calculation would use finite $q_T^{
 m cut}\sim 2\,{
 m GeV}$ and take $\sigma^{
 m nons}(q_T^{
 m cut})pprox 0$
- That would be a bad (catastrophic) approximation with (without) $\sigma^{
 m fpc} \subset \sigma_{
 m sing}$

This is not a slicing calculation

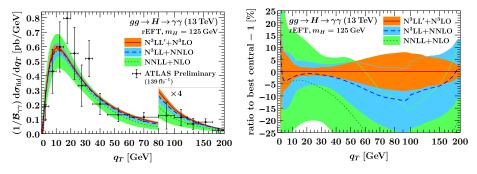


A word of numerical caution:

- Contributions from $\sigma^{
 m fpc}(q_T \lesssim 0.1 {
 m GeV})$ can be as high as ${\cal O}(10\%) imes \sigma_{
 m LO}$
- If evaluated by MC, as e.g. in projection-to-Born method, unbiased integration at these low q_T will be challenging (generation cuts, stability of amplitudes, ...)

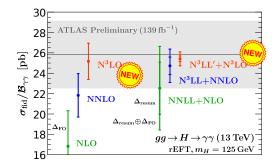
Results

The fiducial q_T spectrum at N³LL'+N³LO



- Total uncertainty is $\Delta_{tot} = \Delta_{q_T} \oplus \Delta_{\varphi} \oplus \Delta_{match} \oplus \Delta_{FO} \oplus \Delta_{nons}$ [See also Ebert, JM, Stewart, Tackmann, 2006.11382 for details]
- Observe excellent perturbative convergence & uncertainty coverage
 - Crucial to consider *every* variation to probe all parts of the prediction
 - Three-loop beam function has noticeable efffect on central value and band
- Divide $H o \gamma\gamma$ branching ratio ${\cal B}_{\gamma\gamma}$ out of data [LHC Higgs Cross Section WG, 1610.07922]
- Data are corrected for other production channels, photon isolation efficiency [ATLAS, 1802.04146]

The total fiducial cross section at N³LO and N³LL′+N³LO



- Large N³LO correction to fiducial cross section (worse than inclusive)
 - Caused by fiducial power corrections, not captured by rescaling
- Resummation restores convergence
 - Needs both q_T and timelike resummation (different effects, neither is sufficient)

Interesting: Infrared sensitivity observed e.g. in $\Delta \eta_{\gamma\gamma}$ spectrum at N³LO [Chen, Gehrmann, Glover, Huss, Mistlberger, 2102.07607]

⇔ Precisely the fiducial p.c.'s we can deal with and resum

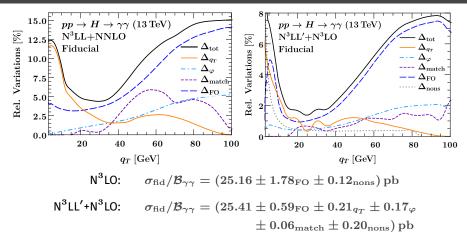
- Presented N³LL'+N³LO and N³LO predictions for the fiducial q_T spectrum and the total fiducial cross section for $gg \to H$ at the LHC
 - First direct comparison to LHC data at this order and level of precision
- Observed, explained, and resummed large fiducial power corrections induced by the experimental acceptance
 - Even total fiducial cross sections are sensitive to q_T resummation effects
- Nonsingular extraction and matching to total cross section enabled by combining all information from $\sigma_{
 m incl}^{
 m N^3LO}$, FO H+1j data, fiducial power corrections, and the known structure of genuine NLP
- Sketched numerically efficient evaluation of three-loop beam functions and fiducial power corrections in SCETlib
 - Will be part of upcoming public release

- Presented N³LL'+N³LO and N³LO predictions for the fiducial q_T spectrum and the total fiducial cross section for $gg \to H$ at the LHC
 - First direct comparison to LHC data at this order and level of precision
- Observed, explained, and resummed large fiducial power corrections induced by the experimental acceptance
 - Even total fiducial cross sections are sensitive to q_T resummation effects
- Nonsingular extraction and matching to total cross section enabled by combining all information from $\sigma_{
 m incl}^{
 m N^3LO}$, FO H+1j data, fiducial power corrections, and the known structure of genuine NLP
- Sketched numerically efficient evaluation of three-loop beam functions and fiducial power corrections in SCETlib
 - Will be part of upcoming public release

Thank you for your attention!

Backup

Uncertainty breakdown



 $\begin{array}{ll} \Delta_{q_T} & \mbox{36 independent scale variations in } W^{(0)} \mbox{ factorization} \\ \Delta_{\varphi} & \mbox{Vary phase of hard scale over } \arg \mu_H \in \{\pi/4, 3\pi/4\} \\ \Delta_{\rm match} & \mbox{Vary transition points governing resummation turn-off} \\ \Delta_{\rm FO} & \mbox{Vary } \mu_R/m_H \in \{1/2, 2\} \mbox{ (dominates over } \mu_F \mbox{ due to overall } \alpha_s^2) \\ \Delta_{\rm nons} & \mbox{Uncertainty on nonsingular extraction} \end{array}$