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Soft drop double differential cross section
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Soft drop
[Larkoski, Marzani, Soyez, Thaler ’14] 
(modified Mass Drop Tagger [Dasgupta, Fregoso, Marzani, Salam ’13])

‣ Re-cluster jet based on angular separation 

‣ Starting from last clustering node, test*:

Pass

Keep both branches. Stop.

Fail
Drop the branch  
with lower energy.  
Move to next node
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Effect: jet is cleaned up from contaminating low-energy radiation 
(cuts down impact of pileup, hadronization, multiparton interactions…)
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Soft drop groomed jet mass
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Benchmark substructure observable, measures jet energy spread

Grooming 
inactive

Fixed order spectrum known at NNLO  
[Kardos, Somogyi, Trócsányi ’18]  
Resummation framework available  
[Frye, Larkoski, Schwartz, Yan ’16] 
Resummed predictions for the LHC 
[Marzani, Schunk, Soyez ’17] 
Joint resummation of                          logarithms  
[Kang, Lee, Liu, Ringer ’18] 
Cusps, fixed-order        corrections under control 
[Larkoski ’20] 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Soft drop groomed jet radius

4

Different from the ungroomed jet radius            is set dynamically         R,Rg

    : angle of the branching that stops soft dropRg

SCET framework set up in 

[Larkoski, Marzani, Soyez, Thaler ’14]

[Kang, Lee, Liu, Neill, Ringer ’19]

Cross section differential in       at NLL accuracy

' ⇡R2
gRg

' R ' ⇡R2
Rg

‣ Resummation of logarithms of  

‣ Non Global Logarithms (NGL) + C/A clustering effects 

‣ Abelian clustering logarithms

R, zcut, Rg/R

[Dasgupta, Salam ’01] [Banfi, Marchesini, Smye ’02]

[Delenda, Appleby, Dasgupta, Banfi ’06]

)

[Kang, Lee, Liu, Neill, Ringer ’19]

MC LL resummation in the large       limitNc



Outline
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‣ SCET framework for the double differential cross section

‣ Application: nonperturbative (NP) corrections to groomed jet mass spectrum 

‣ Outlook
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Framework



Kinematical regions
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At fixed jet mass, the range in groomed jet radius is constrained (NLL values)
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Mode analysis
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Soft dropped

Vetoed by measurement

Out of jet

SoftGlobal 

Set by SD 
Knows about  
ungroomed jet radius Collinear-Softmass

Knows about both  
measurements 
Always passes SD

Collinear
Knows about jet mass 
Set by smallest angle

Collinear-Softgrooming

Stops SD, 
setting groomed jet radius
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Collinear-Soft
Stops SD 
Set by largest angle

Collinear 
Set by smallest angle

✓?g � Rg � ✓c✓?g & Rg � ✓c ✓?g � Rg & ✓c

Large Rg Intermediate Rg Small Rg

(the two measurements 
factorize here)
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Factorization — large Rg
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Note: no large logarithms of  Rg

NGLs formally require summing over  
arbitrary number of emissions 
 
 
[Dasgupta, Salam ’01] 
[Larkoski, Moult, Neill ’15] 
[Becher, Neubert, Rothen, Shao ’15]

Qcut = 2�+1EJzcut
New collinear soft function  
we computed at one loop

[Frye, Larkoski, Schwartz, Yan ’16] 
[Bell, Rahn, Talbert ’18]

Soft drop global soft function

[Bauer, Manohar  ’04]  
[S. Bosch, B. Lange, M. Neubert and G. Paz  ’04] 
[Becher, Neubert ’06] 
[Brüser, Liu, Stahlhofen ’18]

Universal jet function
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Factorization — intermediate Rg
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More NGLs, related to groomed jet radius 
These also affect the shape!
[Kang, Lee, Liu, Neill, Ringer ’19]
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Collinear soft function
[Kang, Lee, Liu, Neill, Ringer ’19]

Collinear soft function
[Ellis, Vermillion, Walsh, Hornig, Lee, ’10]

Most factorized scenario 
Large logarithms of both       and               Rg m2

J/(EJRg)
2



Factorization — small Rg
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Groomed jet mass measurements treated at fixed order; 
no large logarithms of  m2

J/(EJRg)
2

Similar modes as for single differential 
in groomed jet radius
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New collinear function  
we computed at one loop

[Kang, Lee, Liu, Neill, Ringer ’19]



Matching the three regimes
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‣ We consider the cumulant Rg cross section at fixed jet mass, aiming at NLL’ accuracy

✓c(m
2
J)Depending on              ,                           , there may or may not be room for intermediate EFT   

Matching uses weight functions             and 2D profile scales
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‣ We include those leading NGLs that affect the shape (rather than the normalization) 



Application 
Nonperturbative corrections to groomed jet mass distribution



NP corrections to soft drop groomed jet mass
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[Hoang, Mantry, Pathak, Stewart ’19]
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General strategy
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Compute the matching coefficients as moments of the double-differential distribution
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Reaching NLL’ accuracy — intermediate Rg
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In the most factorized scenario, (Laplace space) resummation is immediate

Purely logarithmic dependence: trade logs for derivatives
[Korchemsky, Marchesini ’93], [Balzereit, Mannel, Kilian ’98]  
[…] 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Reaching NLL’ accuracy — small, large Rg
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Large Rg regime: 
Evolution independent of groomed jet radius        

Small Rg regime: 
Evolution independent of groomed jet mass 

Complication: in both cases, the double differential distribution effectively starts at          O(↵s)
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Solution: rearrange the perturbative series in a multiplicative form

Two-loop shift of the endpoint
[Marzani, Schunk, Soyez ’17]

Currently unknown two-loop, non-log terms 
variations included in uncertainty bands

One-loop, non-log terms

Log terms  
from RG evolution

(Similar treatment for the Large Rg case, with multiplication          convolution)



Reaching NLL’ accuracy — recap
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Standard picture Additions

Generic factorization ingredient 



Reaching NLL’ accuracy for the boundary cross section
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Shifted soft drop condition induces two classes of modifications

Corrections to the NLL evolution, due to new anomalous dimension

Corrections to the Rg dependence, require recomputing NLO ingredients with shifted soft drop
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Results - C1
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Note: double logarithms, hard/soft prefactors cancel out in the ratio

Including leading NGLs has small, but sizable effect
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Results - C1 (different     values)
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LL coherent branching from  

  

[Hoang, Mantry, Pathak, Stewart ’19]

NP effects kick in earlier at larger Soft Drop exponent �

�



Results - C2
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Larger spread between MC 

Larger uncertainty bands at NLL’, mainly due to unknown two-loop non-logarithmic terms



Results - C2 (           )    
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For            , boundary corrections to the RG evolution are fundamental� = 0

� = 0



‣ We computed the leading NGLs. Their effect lies within uncertainty bands (see plots) 
 

‣                uses the same matching as slide 13.                uses only large Rg by definition 
 

‣ Profile functions (and their variations) needed to switch off resummation smoothly  
 

‣ Scales must be frozen when
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A few more technical points (in brief)
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Outlook



Further ideas
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‣ A full description of the double differential requires treating also the ungroomed region 

‣ The moments                  govern                , but are interesting observables in their own rightM
i (m

2
J) C

i (m
2
J)

d2� O(↵s)‣ Part of the complexity of the framework derives from         starting at             
Can we turn it into an advantage? (e.g.       measurements)   ↵s

‣ In the pp case, jet grooming allows for cleaner access to the proton structure 
Applications to TMD physics?

‣ Our approach systematically improves                 beyond LL. 
Beyond LL, one may also consider subleading NP effects
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Conclusions
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‣ We developed a SCET framework for the double differential distribution 
in groomed jet mass and groomed jet radius.

‣ First application: we improved the calculation of leading NP corrections  
to the soft drop groomed jet mass distribution

‣ Awaits further applications!


