RPI-Assisted Renormalization of Subleading SCET Operators

Julian Strohm TU München

World SCET 2021 23. April 2021

Work with Martin Beneke and Mathias Garny; in Preparation.

Introduction

SCET beyond Leading Power

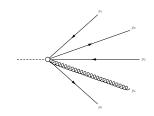
Unlike most other EFTs, including higher-power corrections in SCET is challenging — even from a conceptual standpoint.

→ Breakdown of Factorization, Endpoint-Divergent Convolutions, . . . [Beneke et al., Moult et al., Neubert et al., Stewart et al.]

Even standard renormalization is not completely understood!

Naive calculations yield a subleading anomalous dimension that is incompatible with QCD.

Use **Reparameterization Invariance (RPI)** to reconstruct the proper operator mixing.


→ Throughout the talk: Position-Space Formalism, SCET I

N-Jet Operators

N-Jet operators describe hard scattering processes involving N well-separated jets.

$$J(x) = \int d\mathbf{t} C(\mathbf{t}) \prod_{i=1}^{N} J_i(t)$$

Built out of collinear quark fields χ_i and collinear gauge fields $\mathcal{A}^{\mu}_{\perp}$.

Operator Basis at Subleading Power

A0 Operator
$$J^{(A0)} = \prod_{j
eq i} \psi_j \left(t_j n_{j+}
ight) \left[\chi_i \left(t_i n_{i+}
ight)
ight]$$

A1 Operator
$$J^{(A1)\mu} = \prod_{j
eq i} \psi_j \left(t_j n_{j+} \right) i \partial_{\perp_i}^{\mu} \chi_i \left(t_i n_{i+} \right)$$

$$\mathsf{B1\ Operator} \qquad J^{(B1)\mu} = \prod_{j \neq i} \psi_j\left(t_j n_{j+}\right) \boxed{\mathcal{A}^{\mu}_{\perp_i}\left(t_{i_2} n_{i+}\right) \chi_i\left(t_{i_1} n_{i+}\right)}$$

T1 Operator
$$J^{(T1)}=i\int\mathrm{d}^4x\,T\left\{J^{(A0)},\mathcal{L}^{(1)}\left(x
ight)
ight\}$$

[Beneke, Garny, Szafron, Wang, 1712.04416]

Renormalization of SCET beyond Leading Power

Standard Problem: Renormalize subleading N-jet operators.

- \longrightarrow Regulate IR divergences with small off-shellness p_i^2 .
- → Apparently no major problems.

[Beneke, Garny, Szafron, Wang, 1712.04416,1808.04742]

But: UV poles do not match the IR divergences of QCD!

Only a specific set of fields $\hat{\xi}$, \hat{A}_c correctly reproduces QCD amplitudes off-shell.

$$\psi \xrightarrow{\text{Split into Soft \&}} \hat{\xi} + q \xrightarrow{\text{Field Redefinition}} \xi + q$$

[Beneke, Garny, Szafron, Wang, 1907.05463]

Treat SCET as a full-fledged, stand-alone EFT:

Renormalize subleading N-Jet operators without referencing QCD or preferred fields.

Reparameterization Transformations

Reparameterization Transformations

$$\begin{bmatrix} I & n_{i+} \longrightarrow n_{i+} & \text{II} & n_{i+} \longrightarrow n_{i+} + \epsilon_{\perp_i} & \text{III} & n_{i+} \longrightarrow n_{i+} + \alpha n_{i+} \\ n_{i-} \longrightarrow n_{i-} + \Delta_{\perp_i} & n_{i-} \longrightarrow n_{i-} & n_{i-} \longrightarrow n_{i-} - \alpha n_{i-} \end{bmatrix}$$

[Manohar et al., 0204229; Marcantonini, Stewart, 0809.1093]

Transformations of the SCET Fields?

Derive the transformations directly in SCET by demanding:

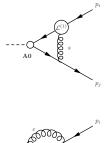
- A The SCET Lagrangian is reparameterization-invariant.
- B Reparameterizations preserve the projection $\psi_{i-}\chi_i=0$.

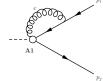
$$\left\{ \begin{array}{l} \delta_{\mathrm{I}} \, \chi_{i} = \frac{ \not \Delta_{\perp_{i}} \not h_{i+}}{4} \chi_{i} + \mathcal{O} \left(\lambda^{2} \chi_{i} \right), \\ \delta_{\mathrm{II}} \, \chi_{i} = \frac{1}{i n_{i+} \partial} \frac{\not \epsilon_{\perp}}{2} \left(i \not \partial_{\perp_{i}} + \not A_{\perp_{i}} \right) \chi_{i} + \left[\frac{1}{i n_{i+} \partial} \epsilon_{\perp_{i}} \cdot \mathcal{A}_{\perp_{i}} \right] \chi_{i} + \mathcal{O} \left(\lambda^{2} \chi_{i} \right), \\ \delta_{\mathrm{III}} \, \chi_{i} = 0 \end{array} \right.$$

Reparameterization Constraints on the Wilson Coefficients

Ansatz:

$$\begin{split} J\left(x\right) &= \int \mathrm{d}\mathbf{t} \; C^{(A0)}\left(t\right) J^{(A0)}\left(t\right) + \int \mathrm{d}\mathbf{t} \; C^{(A0)}\left(t\right) J^{(T1)}\left(t\right) \\ &+ \int \mathrm{d}\mathbf{t} \; C^{(A1)}\left(t\right) J^{(A1)}\left(t\right) + \int \mathrm{d}\mathbf{t} \; C^{(B1)}\left(t\right) J^{(B1)}\left(t\right) + \mathcal{O}\left(\lambda^{2} J^{(A0)}\right) \end{split}$$

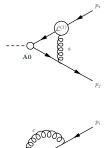

Reparameterization Constraints on the Wilson Coefficients of Subleading Operators:

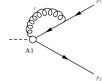

$$\begin{split} \frac{C^{(A1)\mu}\left(Q_{ij},\mu^{2}\right)}{\left(Q_{ij},\mu^{2}\right)} &= \frac{1}{n_{i+}p_{i}} \, C^{(A0)}\left(Q_{ij},\mu^{2}\right) \, \frac{\rlap/n_{i+}}{2} \gamma_{\perp i}^{\mu} \\ &- \frac{1}{n_{i+}p_{i}} \sum_{j \neq i} \left[Q_{ij}^{2} \, \frac{\partial}{\partial Q_{ij}^{2}} \, C^{(A0)}\left(Q_{ij},\mu^{2}\right) \, \right] \frac{2n_{j-}^{\mu}}{n_{i-}n_{j-}} \\ \frac{C^{(B1)A\mu}\left(Q_{ij},x,\mu^{2}\right)}{1} &= \frac{1}{n_{i+}p_{i}} \, C^{(A0)}\left(Q_{ij},\mu^{2}\right) \, \frac{\rlap/n_{i+}}{2} \gamma_{\perp i}^{\mu} \, T^{A} \\ &+ \frac{1}{n_{i+}p_{i}} \sum_{j \neq i} \left[\frac{1}{x} \, C^{(A0)}\left(Q_{ij},\mu^{2}\right) \, \frac{2n_{j-}^{\mu}}{n_{i-}n_{j-}} \, T^{A}, \\ &+ \left(\text{unconstrained}\right), \end{split}$$

where x denotes the fraction of momentum carried by the additional gluon.

Subleading Anomalous Dimension

$$J^{(T1)}$$
 $J^{(A1)}$ $J^{(B1)}$ $J^{(B1)}$ $J^{(B1)}$ $J^{(B1)}$ Γ_{A0A0} Γ_{T1A1} Γ_{T1B1} Γ_{A1T1} Γ_{A1A1} Γ_{A1B1} Γ_{B1T1} Γ_{B1A1} Γ_{B1B1}

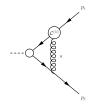

The field representations differ only at higher power,


$$\hat{\chi}_i = \chi_i + \lambda F^{(1)} + \lambda^2 F^{(2)} + \dots$$

Only the mixing of time-ordered products is affected!

Subleading Anomalous Dimension

$$J^{(T1)}$$
 $J^{(A1)}$ $J^{(B1)}$ $J^{(B1)}$ $J^{(T1)}$ Γ_{A0A0} Γ_{T1A1} Γ_{T1B1} Γ_{A1T1} Γ_{A1A1} Γ_{A1B1} Γ_{B1T1} Γ_{B1A1} Γ_{B1B1}



The field representations differ only at higher power,

$$\hat{\chi}_i = \chi_i + \lambda F^{(1)} + \lambda^2 F^{(2)} + \dots$$

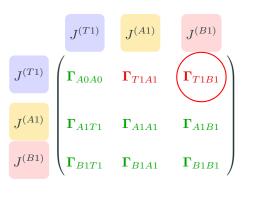
Only the mixing of time-ordered products is affected!

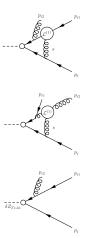
Reconstruction of the Mixing into A1 Operators

The A1 Wilson coefficient is **fully constrained** by RPI,

$$\frac{C^{(A1)\mu}\left(Q_{ij},\mu^{2}\right)}{-\frac{1}{n_{i+}p_{i}}} = \frac{1}{C^{(A0)}\left(Q_{ij},\mu^{2}\right)} \frac{n_{i+}}{2} \gamma_{\perp_{i}}^{\mu} \\
-\frac{1}{n_{i+}p_{i}} \sum_{j \neq i} \left[Q_{ij}^{2} \frac{\partial}{\partial Q_{ij}^{2}} C^{(A0)}\left(Q_{ij},\mu^{2}\right) \right] \frac{2n_{j-}^{\mu}}{n_{i-}n_{j-}}.$$

RPI constraints hold independently of the factorization scale μ ,


$$\mu^{2} \frac{\mathrm{d}}{\mathrm{d}\mu^{2}} \frac{C^{(A1)\mu}}{C^{(A1)\mu}} = \frac{1}{n_{i+}p_{i}} \left[\Gamma_{A0A0}C^{(A0)} \frac{n_{i+}}{2} \gamma_{\perp i}^{\mu} - \frac{1}{n_{i+}p_{i}} \sum_{j \neq i} \left[Q_{ij}^{2} \frac{\partial}{\partial Q_{ij}^{2}} \Gamma_{A0A0}C^{(A0)} \right] \frac{2 n_{j-}^{\mu}}{n_{i-}n_{j-}} \right]$$


$$= \Gamma_{T1A1} C^{(T1)} + \Gamma_{A1A1} C^{(A1)}.$$

Solve for the missing $T1 \rightarrow A1$ mixing: [Beneke et al., 1907.05463]

$$\Gamma_{T1A1}^{\mu} = -\frac{1}{n_{i+}p_{i}}\gamma_{\text{cusp}}\left(\alpha_{s}\right)\sum_{i\neq j}\mathbf{T}_{i}\cdot\mathbf{T}_{j}\frac{2\,n_{j-}^{\mu}}{n_{i-}n_{j-}}$$

Subleading Anomalous Dimension

Remaining: Reconstruct T1 → B1 Mixing.

But first: Ensure Convolutions and Anomalous Dimension are well-defined!

Mixing into B1 Operators: Endpoint Divergences

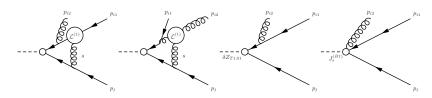
Complication 1: Endpoint-Divergent Convolution

$$\int_0^1 dx \, \underbrace{C^{(B1)}(x)}_{\sim \frac{1}{x} + \dots} \left\langle J^{(B1)}(x) \right\rangle$$

But: The singular part of the convolution is constrained by RPI,

$$\frac{C^{(B1)A\mu}(x)}{C^{(B1)A\mu}(x)} = \frac{1}{n_{i+}p_{i}} C^{(A0)} \frac{n_{i+}}{2} \gamma_{\perp_{i}}^{\mu} T^{A} + \frac{1}{n_{i+}p_{i}} \sum_{j \neq i} \frac{1}{x} C^{(A0)} \frac{2n_{j-}^{\mu}}{n_{i-}n_{j-}} T^{A},$$
+ (unconstrained).

The unconstrained part of the B1 Wilson coefficient is regular,

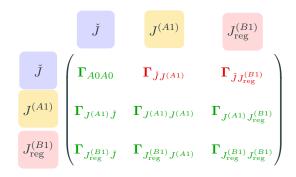

$$\begin{split} C_{\text{unconstrained}}^{(B1)} = & 1 + \frac{\alpha_s}{4\pi} C_F \left[\frac{\pi^2}{6} - 3 + \frac{4}{x} \ln \bar{x} + \ln \frac{Q^2}{\mu^2} - \frac{1}{x} \ln^2 \bar{x} - \frac{2}{x} \ln \bar{x} \ln \frac{Q^2}{\mu^2} - \ln^2 \frac{Q^2}{\mu^2} \right] \\ & + \frac{\alpha_s}{4\pi} C_A \left[-\frac{2}{x} \ln \bar{x} - \frac{1}{\bar{x}} \ln x + \frac{1}{2x} \ln^2 \bar{x} + \frac{1}{x} \ln \bar{x} \ln \frac{Q^2}{\mu^2} \right]. \end{split}$$

Absorb the endpoint divergence into a Singular B1 Operator: [1907.05463]

$$J_{s}^{(B1)\mu} = \prod_{j \neq i} \psi_{j} \left(t_{j} n_{j+} \right) \left[\underbrace{\frac{1}{i n_{i+} \partial}} \mathcal{A}_{\perp_{i}}^{\mu} \left(t_{i} n_{i+} \right) \right] \chi_{i} \left(t_{i} n_{i+} \right).$$

Mixing into B1 Operators: Non-Local Poles

Complication 2: Non-Local Poles


Non-Local Poles proportional to $\frac{1}{\epsilon} \times \frac{1}{(p_{i,1} + p_{i,2})^2}!$

Solution: Combine the T1 operator and the singular B1 operator into \check{J} such that the non-local poles cancel,

$$\check{J} = J^{(T1)} + \sum_{j \neq i} \frac{2n_{j-}^{\mu}}{n_{i-}n_{j-}} J_{s\mu}^{(B1)}.$$

[Beneke, Garny, Szafron, Wang, 1907.05463]

Subleading Anomalous Dimension

Mixing of \check{J} into the regular B1 Operator

The B1 Wilson coefficient is **only partially constrained** by RPI,

$$\frac{C_{\text{reg}}^{(B1)A\mu}(x)}{n_{i+}p_{i}} = \frac{1}{n_{i+}p_{i}} C^{(A0)} \frac{\rlap/n_{i+}}{2} \gamma_{\perp_{i}}^{\mu} T^{A} + \left(\text{unconstrained}\right).$$

The $\check{J} \to J_{\mathrm{reg}}^{(B1)}$ mixing thus cannot be reconstructed using RPI constraints.

But: T1 diagrams with extra collinear emission produce only non-local poles!

$$\cdots \sim \frac{1}{(p_{i,1}+p_{i,2})^2} \left\langle q\bar{q}g \bigg| J_{\mathrm{reg}}^{(B1)} \bigg| 0 \right\rangle$$

Only the singular B1 operator contributes to the $\check{J} o J_{\mathrm{reg}}^{(B1)}$ mixing,

$$\begin{split} \Gamma_{\check{J}J_{\mathrm{reg}}^{(B1)\mu}} &= \underbrace{\Gamma_{J^{(T1)}J_{\mathrm{reg}}^{(B1)\mu}}}_{=0} + \Gamma_{J_{s}^{(B1)}J_{\mathrm{reg}}^{(B1)\mu}} = \Gamma_{J_{s}^{(B1)}J_{\mathrm{reg}}^{(B1)\mu}} \\ &= \underbrace{\frac{\alpha_{s}}{2\pi} \frac{1}{n_{i} + p_{i}} \bigg[\bigg(C_{F} - \frac{C_{A}}{2} \bigg) \frac{\ln \bar{x}}{x} + C_{F} \bigg] \sum_{j \neq i} \frac{2n_{j-}^{\nu}}{n_{i} - n_{j-}} \, \gamma_{\perp_{i}}^{\nu} \gamma_{\perp_{i}}^{\mu}. \end{split}}$$

Summary

Renormalization of Subleading N-Jet Operators

Treat SCET as a full-fledged, stand-alone EFT.

Subleading renormalization can be completely calculated without referencing QCD or a preferred field representation.

- I The RPI transformations of SCET fields can be obtained from the SCET Lagrangian and their projection properties.
- II RPI constraints reconstruct the $\check{J} \rightarrow J^{(A1)}$ mixing.
- **III** Non-Local Poles and End-Point Divergences require a rearrangement of the operator basis.

$$\check{J} = J^{(T1)} + J_s^{(B1)}$$

IV Only the singular B1 Operator contributes to the $\check{J} \to J^{(A1)}$ mixing.

Thanks for Your Attention!