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‣ Introduction, summary of the bare factorization formula at NLP              

[Beneke, AB,Garny,Jaskiewicz, Szafron, Vernazza,Wang `18] [Beneke,AB,Jaskiewicz,Vernazza `19]

‣ Generalized soft functions at NLP accuracy


‣ Calculation: diagrams, reduction to MIs, evaluation of MIs using DE method


‣ Integrated results and checks at cross-section level


‣ Conclusions & Outlook
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Motivation

‣ Provide insight on higher order perturbative functions in NLP factorization 

theorems


‣ Complete the check of our bare NLP factorization formula to NNLO by 

computing all the perturbative ingredients that are needed
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1 Introduction

The weak-coupling expansion of QCD high-energy scattering fails near kinematic thresh-
olds due to the restricted phase space for real emission. The logarithmic enhancements
in the kinematic variable that characterizes the threshold must be resummed to all or-
ders in the coupling expansion to arrive at a reliable approximation. This has been
studied first [1, 2] and in greatest detail for the simplest such situation, the production
of a single uncoloured particle DY (Drell-Yan process) in the collision of two hadrons,
A(pA)B(pB) ! DY(Q) +X, where X denotes an unobserved QCD final state. The DY
process has always provided the first physically very relevant case on which to push the
accuracy of resummation to the next level, or explore new approaches to resummation [3].

The DY spectrum d�DY/dQ2 is given by the convolution of parton distributions in
the incoming hadrons with partonic short-distance cross sections �̂ab in partonic channels
ab. The parton scattering cross sections can be regarded as functions of z = Q2/ŝ, where
ŝ = xaxbs is the partonic center-of-mass (cms) energy squared, and xa, xb the momentum
fractions of the partons in the corresponding hadrons. Near the partonic threshold z = 1,
�̂ab has the singular expansion

�̂ab(z) =
1X
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(1.1)
In this expression the series with coe�cients cn, cnm encompass the leading power (LP)
singular terms, and, more specifically, the terms c0 and cn(2n�1) constitute the leading
logarithms (LL). The terms multiplied by dnm are suppressed by one power of (1 � z)
and are referred to as next-to-leading power (NLP). The NLP LL series is given by the
highest power NLP logarithms with coe�cients dn(2n�1) for n = 1, 2, . . ..

Existing approaches to soft gluon resummation of the DY threshold apply only to
the LP terms. The key result is the factorization of the partonic cross section

�̂(z) = H(Q2)QSDY(Q(1� z)) (1.2)

into the product of a hard function and the DY soft function [4]

SDY(⌦) =

Z
dx0

4⇡
eix

0⌦/2 1

Nc

Tr h0|T̄(Y †
+(x

0)Y�(x
0))T(Y †

�(0)Y+(0))|0i (1.3)

expressed in terms of Wilson lines, as defined below. Both functions depend on a renor-
malization scale µ. This dependence is important to perform the resummation via a
renormalization group equation, but will not be indicated explicitly unless necessary. In
principle it is possible to sum arbitrary subleading logarithms at LP by computing the
hard and soft function and the evolution equation to su�ciently high order. Presently, LP
logarithms can be summed to the next-to-next-to-next-to-leading logarithmic order [3,5].

In contrast, much less is understood at NLP. The structure of NLP logarithms has
recently received increased interest with explicit calculations at fixed order n = 1, 2
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‣ Threshold resummation and fixed-order expansions have been applied to many different 
processes at LP: Drell-Yan [Becher, Neubert, Xu `07], Higgs production [Ahrens, Becher,Neubert,Yang 
`09], ttbar [Ahrens,Ferroglia,Neubert,Pecjak,Yang `10,`11], ttbar+V [AB,Ferroglia,Pecjak,Ossola,Yang,Signer 
`15,`16,`17]…DY at NLP: Expansion by regions and LBKD [Bonocore,Laenen,Magnea,Vernazza,White 
`14,`16] [Bonocore, Laenen, Magnea, Melville, Vernazza, White `15], [Bahjat-Abbas, Sinninghe Damsté, Vernazza, 
White `18]. LL resummation in SCET [Beneke, AB,Garny,Jaskiewicz, Szafron, Vernazza,Wang `18], 
Factorization theorem in SCET [Beneke,AB,Jaskiewicz,Vernazza `19], Diagrammatic resummation of 
threshold effects at NLP [Bahjat-Abbas, Bonocore, Sinninghe Damsté, Laenen,Magnea,Vernazza,White 
`19] ,Generalized threshold kinematics [Lustermans, Michel, Tackmann `19].
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z
ffab(⌧/z)�̂ab(z)

Threshold Kinematics

When real radiation is 
present in the final state

 expansion(1 − z)The partonic cross section �̂ab(z) factorizes into a hard function, originating from squar-
ing the hard matching coe�cient eCA0,A0(t, t̄ ) in (2.8), and a soft function:

�̂(z) = H(Q2)QSDY(Q(1� z)) . (2.11)

The leading power DY soft function is given by [32]

SDY(⌦) =

Z
dx0

4⇡
ei⌦x0/2 1

Nc
Tr h0|T̄(Y †

+(x
0)Y�(x

0))T(Y †
�(0)Y+(0))|0i . (2.12)

2.2 Emergence of collinear functions

The analysis becomes more involved when subleading-power e↵ects are studied. The
framework employed here for the power-suppressed corrections in SCET was developed
in [33–36]. It makes use of collinear gauge-invariant building blocks, which consist of
collinear quark and gluon fields in a particular collinear direction, and non-local operators
with insertions of terms from the power-suppressed SCET Lagrangian to systematically
include subleading-power contributions in perturbative calculations. In what follows,
we use this general framework to derive power corrections to the LP factorization for-
mula for DY production at threshold. We find that the new physical ingredients, the
collinear functions, arise from soft-collinear interactions present in the power-suppressed
Lagrangian. These technically appear as a consequence of Lagrangian insertions in time-
ordered product operators.

As an illustrative example, we consider the insertion of the NLP soft-collinear inter-
action Lagrangian

L
(2)
2⇠ (z) =

1

2
�̄c(z) z

µ
? z⌫?

h
i@⌫ in�@ B

+
µ (z�)

i /n+

2
�c(z) (2.13)

from (A.1). The decoupling transformation has already been performed (and the super-
script (0) on the collinear gauge-invariant quark field �c dropped), and the B± field is a
soft building block formed by a soft covariant derivative and soft Wilson lines (we also
define the soft quark building block for completeness)

B
µ
± = Y †

± [iDµ
s Y±] , (2.14)

q± = Y †
± qs . (2.15)

In contrast to LP, the decoupling transformation does not remove completely the
soft-collinear interactions. In fact, the insertions of Lagrangian terms appear in non-
local operators with an integral over the position of the insertion,

J T2
c (t) = i

Z
d4z T

h
�c(tn+)L

(2)
2⇠ (z)

i
, (2.16)

where the field �c(tn+) arises from the LP JA0,A0 current. See Figure 3 for illustration.
The collinear fields in (2.13) depend on all components of the z coordinate. The soft
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LP factorization

& Soft function

̂s ≠ Q2

z = Q2/ ̂s → 1

[Becher, Neubert, Xu `07]
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NLP Factorization formula & Soft functions

�(z) =
1

(1� ✏)

�̂(z)

z
. (2.5)

equation (3.32) in [9]

�dyn
NLP(z) = �

2

(1� ✏)
Q
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4
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d(n+p)C

A0,A0 (n+p, xbn�pB)C
⇤A0A0 ( xan+pA, xbn�pB)

⇥

5X

i=1

Z
{d!j} Ji,�� (n+p, xan+pA; {!j}) Si(⌦; {!j}) + h.c. , (2.6)

where ⌦ = Q(1� z).
In the factorisation formula written in equation (2.6) we have used the generalised,

multi-local, soft functions in momentum space as the Fourier transforms defined in the
following way,

Si(⌦; {!j}) =

Z
dx

0

4⇡
e
i⌦x0/2

Z ⇢
dzj�

2⇡

�
e
�i!jzj�Si(x0; {zj�}) , (2.7)

where the position-space soft functions, Si(x0; {zj�}), which contribute at the next-to-
leading power are given by

S1(x
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1
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1
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i 1

(in�@)

⇥
B

+
µ?
(z�),B

+
⌫?
(z�)

⇤◆
|0i , (2.9)
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1
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|0i , (2.10)

S
AB
4;µ⌫,bf (x

0; z1�, z2�) =
1
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h
Y

†
+(x

0)Y�(x
0)
i
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Y
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B
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|0i , (2.11)
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ΔNLP = Δkin
NLP(z) + Δdyn

NLP
(z)Δ(z) =

1
(1 − ϵ)

̂σ(z)
z

Kinematic contributions are related

to “phase space” corrections to LP 

factorization formula

(LP soft function needed with 


 dependence)(x0, ⃗x )

Collinear functions

(contain derivative contribution),


calculated up to  in

[Beneke,AB,Jaskiewicz,Vernazza `19]

𝒪(αs)
Fourier transforms

Si(⌦; {!j}) =

Z
dx0

4⇡
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e�i!jzj�Si(x0; {zj�}) . (3.33)

The position-space soft functions appearing at NLP are given by
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We recall from the discussion of the list (2.25) that the soft functions S2 and S3 are
redundant and could be eliminated by relating them to S4. There exists in principle
another soft function,

eSA
6;bf,µ⌫(x;!) =
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with the soft structure given by the second term in (2.25). This soft function is required
to obtain the NLP one-soft-gluon emission amplitude, see Appendix B, but does not
contribute to the DY cross section at any order in perturbation theory. This is because

20

Generalized Soft Functions

 channelqq̄

At NLP the power suppression is entirely coming from Lagrangian insertions in time ordered products operators

[Beneke,AB,Jaskiewicz,Vernazza `19]
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Generalized Soft Functions

‣ List of the soft functions with a non-zero contribution to the NLP cross section

Fourier transforms
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The position-space soft functions appearing at NLP are given by
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⇥T

✓h
Y †
�(0)Y+(0)

i

af
B

+A
µ?

(z1�)B
+B
⌫?

(z2�)

◆
|0i , (3.37)

S5;bfgh,��(x
0; z1�, z2�) =

1

Nc
h0|T̄

h
Y †
+(x

0)Y�(x
0)
i

ba

⇥T

✓h
Y †
�(0)Y+(0)

i

af
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(in�@z1)(in�@z2)

q+�g(z1�)q̄+�h(z2�)

◆
|0i . (3.38)

We recall from the discussion of the list (2.25) that the soft functions S2 and S3 are
redundant and could be eliminated by relating them to S4. There exists in principle
another soft function,

eSA
6;bf,µ⌫(x;!) =

Z
dz� e�i! z� 1

Nc
h0|T̄

h
Y †
+(x)Y�(x)

i

ba

⇥T

✓h
Y †
�(0)Y+(0)

i

af

i@[µ?

in�@
B

+A
⌫?] (z�)

◆
|0i , (3.39)

with the soft structure given by the second term in (2.25). This soft function is required
to obtain the NLP one-soft-gluon emission amplitude, see Appendix B, but does not
contribute to the DY cross section at any order in perturbation theory. This is because
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Fourier transforms

Si(⌦; {!j}) =

Z
dx0

4⇡
ei⌦x0/2

Z ⇢
dzj�
2⇡

�
e�i!jzj�Si(x0; {zj�}) . (3.33)

The position-space soft functions appearing at NLP are given by

S1(x
0; z�) =

1

Nc
Trh0|T̄

h
Y †
+(x

0)Y�(x
0)
i
T

✓h
Y †
�(0)Y+(0)

i i@⌫
?

in�@
B

+
⌫?

(z�)

◆
|0i , (3.34)

S2;µ⌫(x
0; z�) =

1

Nc
Tr h0|T̄

h
Y †
+(x

0)Y�(x
0)
i

⇥T

✓h
Y †
�(0)Y+(0)

i 1

(in�@)

⇥
B

+
µ?
(z�),B

+
⌫?
(z�)

⇤◆
|0i , (3.35)

S3(x
0; z�) =

1

Nc
Tr h0|T̄

h
Y †
+(x

0)Y�(x
0)
i

⇥T

✓h
Y †
�(0)Y+(0)

i 1

(in�@)2
⇥
B

+µ?(z�),
⇥
in�@B

+
µ?
(z�)

⇤⇤◆
|0i , (3.36)

SAB
4;µ⌫,bf (x

0; z1�, z2�) =
1

Nc
Tr h0|T̄

h
Y †
+(x

0)Y�(x
0)
i

ba

⇥T

✓h
Y †
�(0)Y+(0)

i

af
B

+A
µ?

(z1�)B
+B
⌫?

(z2�)

◆
|0i , (3.37)

S5;bfgh,��(x
0; z1�, z2�) =

1

Nc
h0|T̄

h
Y †
+(x

0)Y�(x
0)
i

ba

⇥T

✓h
Y †
�(0)Y+(0)

i

af

g2s
(in�@z1)(in�@z2)

q+�g(z1�)q̄+�h(z2�)

◆
|0i . (3.38)

We recall from the discussion of the list (2.25) that the soft functions S2 and S3 are
redundant and could be eliminated by relating them to S4. There exists in principle
another soft function,

eSA
6;bf,µ⌫(x;!) =

Z
dz� e�i! z� 1

Nc
h0|T̄

h
Y †
+(x)Y�(x)

i

ba

⇥T

✓h
Y †
�(0)Y+(0)

i

af

i@[µ?

in�@
B

+A
⌫?] (z�)

◆
|0i , (3.39)

with the soft structure given by the second term in (2.25). This soft function is required
to obtain the NLP one-soft-gluon emission amplitude, see Appendix B, but does not
contribute to the DY cross section at any order in perturbation theory. This is because

20

From 
insertions on the


same (collinear) leg

ℒ(1) ℒ(1)

generates all the LL

contributions

The partonic cross section �̂ab(z) factorizes into a hard function, originating from squar-
ing the hard matching coe�cient eCA0,A0(t, t̄ ) in (2.8), and a soft function:

�̂(z) = H(Q2)QSDY(Q(1� z)) . (2.11)

The leading power DY soft function is given by [32]

SDY(⌦) =

Z
dx0

4⇡
ei⌦x0/2 1

Nc
Tr h0|T̄(Y †

+(x
0)Y�(x

0))T(Y †
�(0)Y+(0))|0i . (2.12)

2.2 Emergence of collinear functions

The analysis becomes more involved when subleading-power e↵ects are studied. The
framework employed here for the power-suppressed corrections in SCET was developed
in [33–36]. It makes use of collinear gauge-invariant building blocks, which consist of
collinear quark and gluon fields in a particular collinear direction, and non-local operators
with insertions of terms from the power-suppressed SCET Lagrangian to systematically
include subleading-power contributions in perturbative calculations. In what follows,
we use this general framework to derive power corrections to the LP factorization for-
mula for DY production at threshold. We find that the new physical ingredients, the
collinear functions, arise from soft-collinear interactions present in the power-suppressed
Lagrangian. These technically appear as a consequence of Lagrangian insertions in time-
ordered product operators.

As an illustrative example, we consider the insertion of the NLP soft-collinear inter-
action Lagrangian

L
(2)
2⇠ (z) =

1

2
�̄c(z) z

µ
? z⌫?

h
i@⌫ in�@ B

+
µ (z�)

i /n+

2
�c(z) (2.13)

from (A.1). The decoupling transformation has already been performed (and the super-
script (0) on the collinear gauge-invariant quark field �c dropped), and the B± field is a
soft building block formed by a soft covariant derivative and soft Wilson lines (we also
define the soft quark building block for completeness)

B
µ
± = Y †

± [iDµ
s Y±] , (2.14)

q± = Y †
± qs . (2.15)

In contrast to LP, the decoupling transformation does not remove completely the
soft-collinear interactions. In fact, the insertions of Lagrangian terms appear in non-
local operators with an integral over the position of the insertion,

J T2
c (t) = i

Z
d4z T

h
�c(tn+)L

(2)
2⇠ (z)

i
, (2.16)

where the field �c(tn+) arises from the LP JA0,A0 current. See Figure 3 for illustration.
The collinear fields in (2.13) depend on all components of the z coordinate. The soft

6



Alessandro Broggio    23/04/2021 7

Generalized Soft Functions
‣ Extract the soft operators matrix elements up to two emissions. At NLO only  

contributes. Virtual-real was already computed in [Beneke,AB,Jaskiewicz,Vernazza `19].

‣ I will mainly focus on  since it is the soft function with the most interesting structure


‣  matrix elements with one and two soft emissions

S1

S1

S1

136 Chapter 6. Real-real contributions to the NLP soft functions

6.2 Organisation of the calculation
As we have seen for the S1 soft function at the next-to-leading order, the soft building
blocks making up the soft functions contain a dependence on the z≠ component of the
position of the insertion of a particular subleading power Lagrangian term in a time-ordered
product (two positions z1≠ and z2≠ for the case of two O(⁄) insertions). The conjugate
variable in momentum-space is the Ê variable (two variables, Ê1 and Ê2, for the double
insertions).

Explicitly, the soft matrix elements, such as for example

ÈgK(k)| iˆ‹

‹

in≠ˆ
B

+
‹‹

(z≠) |0Í = TK
gs

(n≠k)

C

k÷

‹
≠

k2
‹

(n≠k)n÷

≠

D

‘ú

÷
(k) eiz≠k , (6.1)

depend on the eiz≠k factor which combined with the dz≠ integral in definition of the
momentum-space soft function in equation (3.82) yields a ”(Ê ≠ n≠k) term, where k is the
total momentum emitted from the soft building block. We have already encountered this
specific example in equation (5.6) for the case of the S1 soft function at next-to-leading
order.

We note that the exact form of the Ê dependent ” - functions appearing in the integrals
describing the power suppressed soft functions depends on the total soft momentum
emitted from the soft building blocks at position z≠ (z1≠ and z2≠ in case of two O(⁄)
insertions). The momenta of soft outgoing partons from the power suppressed building
blocks are labelled by ki, where i counts the number of the partons emitted. For example,
if only a single gluon emission originates from the next-to-leading power soft building
block, the ” - function in the corresponding integral will be ”(Ê ≠ n≠k1). However, if
instead two gluons are emitted, then the relevant constraint appearing in the corresponding
integrals will be ”(Ê ≠ n≠k1 ≠ n≠k2), and so on for more emissions. Due to this fact, in
the presentation below, we separate the calculation of the relevant integrals as defined by
their dependence on the Ê dependent ” - function structure.

Before we discuss the calculations of the relevant integrals appearing in the real-real
contributions to the soft functions, we briefly describe how the calculation is organised. As
we have noted, there are five next-to-leading power soft functions which could contribute
at this order. We begin by outlining how the expressions for the relevant soft functions
were constructed at O(–2

s
).

The S1 soft function is discussed in section 6.2.1 and the S3 soft function in section 6.2.2.
Both of these soft functions were calculated directly from their matrix element definitions.
We give all the necessary expressions in the relevant sections below. The S2 soft function
vanishes at O(–2

s
) therefore we do not purse it further here. In chapter 5, we have described

how the NLP Feynman rules can be used to directly obtain expressions for soft functions
in momentum-space. We use this method for the calculation of S4 and S5 soft functions
for which further details are provided in section 6.2.3.

6.2.1 S1 soft function
We begin with S1 and follow the strategy used in chapter 5 for the calculation of its
next-to-leading order correction. Here, we present considerations at the next order in

in momentum space

this corresponds to


δ(ω − n−k)

One emission from

the soft building block


and one emission

from the Wilson line

+…………

6.2. Organisation of the calculation 137

perturbation theory. Hence, instead of the ÈXs| state in equation (5.3) being made up of
a single gluon, it now contains two partons. It follows that, instead of the single gluon
emission matrix element given in equation (5.4), we require expressions for matrix elements
with two external partons. These partons can be soft gluons, quarks, and ghosts, since
we work in Feynman gauge. We label the momenta of the emitted partons k1 and k2 for
concreteness. Note that here, not all soft emissions must come from the power suppressed
building block iˆ

µ
‹

in≠ˆ
B

+
µ‹

(z≠), soft emissions can also originate from the soft Wilson lines
present in the soft matrix element due to the decoupling transformation applied to the
leading power SCET current (these Wilson lines are already present at leading power).
We give explicit expressions and discuss the origin of every term below.

The two real-real soft gluon emission matrix element for the S1 soft function is given
by

ÈgK1(k1)gK2(k2)|T
C

Y †

≠(0)Y+(0) iˆµ

‹

in≠ˆ
B

+
µ‹

(z≠)
D

|0Í =

g2
s
TK2 TK1 1

(n≠k1)
n÷2

≠

(n≠k2)

C

k÷1
1‹

≠
k2

1‹

(n≠k1)
n÷1

≠

D

‘ú

÷1 (k1)‘ú

÷2 (k2) eiz≠k1

+g2
s
TK1 TK2 1

(n≠k2)
n÷1

≠

(n≠k1)

C

k÷2
2‹

≠
k2

2‹

(n≠k2)
n÷2

≠

D

‘ú

÷1 (k1)‘ú

÷2 (k2) eiz≠k2

≠g2
s
TK2 TK1 1

(n≠k1)
n÷2

+

(n+k2)

C

k÷1
1‹

≠
k2

1‹

(n≠k1)
n÷1

≠

D

‘ú

÷1 (k1)‘ú

÷2 (k2) eiz≠k1

≠g2
s
TK1 TK2 1

(n≠k2)
n÷1

+

(n+k1)

C

k÷2
2‹

≠
k2

2‹

(n≠k2)
n÷2

≠

D

‘ú

÷1 (k1)‘ú

÷2 (k2) eiz≠k2

+g2
s

ifK1K2KTK
1

n≠(k1 + k2)

Q

a ≠
(k÷2

1‹
+ k÷2

2‹
) n÷1

≠

(n≠k1)
+ (k÷1

1‹
+ k÷1

2‹
) n÷2

≠

(n≠k2)

≠
n÷1

≠ n÷2
≠

n≠(k1 + k2)(n≠k1)(n≠k2)

5
(n≠k1)

1
k2

1‹
+ k1‹ · k2‹

2

≠(n≠k2)
1
k2‹ · k1‹

+ k2
2‹

2 6R

b‘ú

÷1(k1)‘ú

÷2(k2) eiz≠(k1+k2)

+g2
s
ifK1K2KTK

1
(n≠(k1 + k2))2

1
(k1 + k2)2

Q

a
5
n÷1

≠ (2k1 + k2)÷2

≠n÷2
≠ (k1 + 2k2)÷1 ≠ g÷2÷1(n≠(k1 ≠ k2))

6
(k1‹ + k2‹)2

+
5
(k÷1

1‹
+ k÷1

2‹
)(≠2k1 ≠ k2)÷2 + (k÷2

1‹
+ k÷2

2‹
)(k1 + 2k2)÷1

+g÷2÷1
1
k2

1‹
≠ k2

2‹

26
(n≠(k1 + k2))

R

b‘ú

÷1(k1)‘ú

÷2(k2) eiz≠(k1+k2). (6.2)

We take a moment to describe the terms appearing in the above expression. The first
four lines correspond to a single gluon being emitted from the explicit soft building block
iˆ

µ
‹

in≠ˆ
B

+
µ‹

(z≠) and the second gluon being emitted from one of the Wilson lines, either

Both soft gluons

generated from


soft building block

+…δ(ω − n−k1 − n−k2)

δ(ω − n−k1 − n−k2)

Gluon with momentum

 generated by soft


building block that splits
k1 + k2

or 
δ(ω − n−k1)

δ(ω − n−k2)
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Generalized Soft Functions
‣  and  contribute only to the structure 

‣  contributes only  terms


‣We need to interfere these matrix elements with the LP* amplitude

S4 S5 δ(ω1 − n−k1) δ(ω2 − n−k2)
S3 δ(ω − n−k1 − n−k2)

6.2. Organisation of the calculation 141

Figure 6.2: The cross-section level diagrams for the S3 soft function. Both of the soft gluons
are emitted from the power suppressed soft building block represented here by the
red dot.

◊ÈXs|T
AË

Y †

≠(0)Y+(0)
È 1

(in≠ˆ)2

Ë
B

+ µ‹(z≠),
Ë
in≠ˆB

+
µ‹

(z≠)
ÈÈ B

|0Í . (6.8)

We have already given the necessary expression for the leading power matrix element in
section 6.2.1 above. The power suppressed soft building block characterising S3 contains
two explicit B

+ fields, hence at O(–2
s
) the state ÈXs| must contain two soft gluons. The

result we require is

ÈgK1(k1)gK2(k2)|
1

(in≠ˆ)2

Ë
B

+ µ‹(z≠),
Ë
in≠ˆB

+
µ‹

(z≠)
ÈÈ

|0Í =

g2
s
ifK1K2KTK

1
(n≠(k1 + k2))2

C

(n≠k1 ≠ n≠k2)g÷1÷2
‹

+(n≠k2)
(n≠k1)

k÷2
1‹

n÷1
≠ ≠

(n≠k1)
(n≠k2)

k÷1
2‹

n÷2
≠ + k÷1

2‹
n÷2

≠ ≠ k÷2
1‹

n÷1
≠

≠

A
k1‹ · k2‹

n≠k1
≠

k1‹ · k2‹

n≠k2

B

n÷1
≠ n÷2

≠

D

‘ú

÷1(k1)‘ú

÷2(k2)eiz≠(k1+k2). (6.9)

This expression is much simpler than the S1 counterpart in (6.2) due to the fact that
Wilson lines here can be set to unity as the emission of soft gluons must occur from the
B

+ fields.
Since the expression in (6.9) is only proportional to the eiz≠(k1+k2) factor, the Ê

dependent ” - function in the relevant integrals yielding S3 is ”(Ê ≠ n≠k1 ≠ n≠k2). We
provide the representation of the interference in (6.8) in terms of diagrams in figure 6.1
and the reduced cross-section level expression in section 6.3.2.

× ei z−(k1+k2)~

contribute only

to  both to 

and  with 
or  structures

S1 C2
F

CACF δ(ω − n−k1)
δ(ω − n−k2)

contribute only

to  (  ) with 

or  structures
S1 CACF δ(ω − n−k1)

δ(ω − n−k2)
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Generalized Soft Functions

contribute only

to  with
S1

δ(ω − n−k1 − n−k2)

contribute both

to  and  with
S1 S3

δ(ω − n−k1 − n−k2)

contribute to  with
S4
δ(ω1 − n−k1) δ(ω2 − n−k2)

contribute to  with
S5
δ(ω1 − n−k1) δ(ω2 − n−k2)
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Reduction to Master Integrals
‣ Soft functions at LP [Li, Mantry, Petriello `11],[Becher, Bell, Marti `12], [Ferroglia, Pecjak,Yang `12]

‣ 9 auxiliary topologies needed to reduce the soft functions (we used Litered)


‣ In total 8 MIs are found, 5 of them with the constraint , 2 with  
and one with 

‣ 3 MIs can be computed by direct integration


‣ 5 MIs computed with the differential equation method.  They all belong to the same topology with 
the  constraint

δ(ω − n−k1) δ(ω − n−k1 − n−k2)
δ(ω1 − n−k1) δ(ω2 − n−k2)

δ(ω − n−k1)

6.3. Reduction of the integrals 147

and reducing the result to a set of master integrals. We find

S(2)2r0v

1 (�, Ê)”(Ê≠n≠k1) = C2
F

8 (2 ≠ 9‘ + 9‘2)
‘2 Ê (� ≠ Ê)2 I1

+CF CA

S

U(2 ≠ 3‘) (≠4� + ‘ (Ê + 19�) + 4‘2 (Ê ≠ 7�) ≠ 16‘3(Ê ≠ �))
‘2(1 ≠ 2‘) Ê � (� ≠ Ê)2 I1

≠
(1 ≠ 4‘2)

‘ Ê � I2 + (3� ≠ 10‘ � + 16‘2(Ê + �))
2(1 ≠ 2‘) Ê � I3

+(� ≠ 3Ê)
2Ê

I4 + � I5

T

V , (6.22)

where the master integrals Ii appearing in the above expression are given by

I1 = g4
s

⁄ ddk1

(2fi)d

⁄ ddk2

(2fi)d

1
≠ 2fi”(k2

1)◊(k0
1)

2 1
≠ 2fi”(k2

2)◊(k0
2)

2

◊”(� ≠ n≠k1 ≠ n+k1 ≠ n≠k2 ≠ n+k2)”(Ê ≠ n≠k1) , (6.23)

I2 = g4
s

⁄ ddk1

(2fi)d

⁄ ddk2

(2fi)d

1
≠ 2fi”(k2

1)◊(k0
1)

2 1
≠ 2fi”(k2

2)◊(k0
2)

2

◊
1

(n≠(k1 + k2))
”(� ≠ n≠k1 ≠ n+k1 ≠ n≠k2 ≠ n+k2)”(Ê ≠ n≠k1) , (6.24)

I3 = g4
s

⁄ ddk1

(2fi)d

⁄ ddk2

(2fi)d

1
≠ 2fi”(k2

1)◊(k0
1)

2 1
≠ 2fi”(k2

2)◊(k0
2)

2

◊
1

(k1 + k2)2 ”(� ≠ n≠k1 ≠ n+k1 ≠ n≠k2 ≠ n+k2)”(Ê ≠ n≠k1) , (6.25)

I4 = g4
s

⁄ ddk1

(2fi)d

⁄ ddk2

(2fi)d

1
≠ 2fi”(k2

1)◊(k0
1)

2 1
≠ 2fi”(k2

2)◊(k0
2)

2 1
(n+k2)

◊
1

(k1 + k2)2 ”(� ≠ n≠k1 ≠ n+k1 ≠ n≠k2 ≠ n+k2)”(Ê ≠ n≠k1) , (6.26)

I5 = g4
s

⁄ ddk1

(2fi)d

⁄ ddk2

(2fi)d

1
≠ 2fi”(k2

1)◊(k0
1)

2 1
≠ 2fi”(k2

2)◊(k0
2)

2 1
(n+k2)

1
(k1 + k2)2

◊
1

(n≠(k1 + k2))
”(� ≠ n≠k1 ≠ n+k1 ≠ n≠k2 ≠ n+k2)”(Ê ≠ n≠k1) . (6.27)

We see explicitly now the dependence on ”(Ê ≠ n≠k1). The calculation of these master
integrals and the corresponding results are provided in section 6.4.1.

6.3.2 ”(Ê ≠ n≠k1 ≠ n≠k2)
We now give the reduced expressions for contributions to S1 and S3 which depend on
master integrals with a ”(Ê ≠ n≠k1 ≠ n≠k2) constraint. For S1, this contribution does not

148 Chapter 6. Real-real contributions to the NLP soft functions

only include the interference of eiz≠(k1+k2) proportional terms in (6.2) with the leading
power two gluon matrix element in (6.5), but rather, in addition also the soft quark and
soft ghost contributions in the matrix elements in (6.3) and (6.4).

The expression for S3 is obtained by interfering (6.8) with (6.5). We do not label the
S3 soft function with a ”(Ê ≠ n≠k1 ≠ n≠k2) superscript as this is its only contribution.

Most of the terms forming the S1 soft function give rise to CF CA colour structure,
with the exception of the piece where the soft gluon splits into a soft quark-antiquark pair
which is proportional to CF nf where nf is the number of flavours. Concretely, we find

S(2)2r0v

1 (�, Ê)”(Ê≠n≠k1≠n≠k2) = CF CA

C
9 ≠ 20‘ + 12‘2

≠ 2‘3

‘2 (3 ≠ 2‘)Ê2(� ≠ Ê)I6 + (� ≠ Ê)I7

D

≠CF nf

4(1 ≠ ‘)2

‘ (3 ≠ 2‘)Ê2(� ≠ Ê) I6 , (6.28)

where we see that two new master integrals I6 and I7 appear. These are given in equa-
tions (6.30) and (6.31) respectively. For the S3 soft function we find

S(2)
3 (�, Ê) = 2CF CA(1 ≠ ‘)

(3 ≠ 2‘)Ê2(� ≠ Ê)I6 . (6.29)

The two new master integrals appearing in the above expressions are given by

I6 = g4
s

⁄ ddk1

(2fi)d

⁄ ddk2

(2fi)d

1
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and

I7 = g4
s

⁄ ddk1

(2fi)d

⁄ ddk2

(2fi)d

1
≠ 2fi”(k2

1)◊(k0
1)

2 1
≠ 2fi”(k2

2)◊(k0
2)

2 1
(k1 + k2)2

1
(n+k2)

◊
1

(n≠k1)
”(� ≠ n≠k1 ≠ n+k1 ≠ n≠k2 ≠ n+k2)”(Ê ≠ n≠k1 ≠ n≠k2) . (6.31)

We see that the I6 master integral in equation (6.30) is very similar to the I1 master integral
in equation (6.23). They both do not contain any propagators, and hence, are simply
integrals over phase-space only. The sole di�erence is the ”(Ê ≠ n≠k1) term in I1, which is
replaced by ”(Ê ≠ n≠k1 ≠ n≠k2) in I6. The master integral I7 in equation (6.31) contains a
new propagator structure on top of the change in the argument of the ”(Ê ≠ n≠k1 ≠ n≠k2)
”-function.

6.3.3 ”(Ê1 ≠ n≠k1)”(Ê2 ≠ n≠k2)
Lastly, we present the results for the diagrams in figures 6.3 and 6.4 which correspond
to contributions to the S4 and S5 soft functions. As explained above in section 6.2.3, we
have redefined the collinear functions for these objects, such that the collinear functions
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1 Auxiliary topology SB

The auxiliary topology SB is defined by the following set of seven propagators
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and equivalent relations hold for P5, P6 and P7. Linear propagators, which often appear in
e↵ective field theory calculations, such as P2, P3, P6 and P7 are supported by the LiteRed

[2,3] reduction program. The last two propagators P6 and P7 are both linear and cut and they
are currently used to implement the phase space constraints of the soft functions definitions.
The integrals belonging to the SB topology can be written as
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and after running the reduction code we find that five master integrals (MIs) belong to the
topology SB. We label the MIs of this topology as

Î1(⌦,!) ⌘ ISB(0, 0, 0, 1, 1, 1, 1), Î2(⌦,!) ⌘ ISB(0, 0, 1, 1, 1, 1, 1),

Î3(⌦,!) ⌘ ISB(1, 0, 0, 1, 1, 1, 1), Î4(⌦,!) ⌘ ISB(1, 1, 0, 1, 1, 1, 1),

Î5(⌦,!) ⌘ ISB(1, 1, 1, 1, 1, 1, 1) , (4)

where the integral I1(⌦,!) represents the starting phase space integral. It is convenient to
make the variable change ! ! r⌦, and redefine the MIs as
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Î4(⌦, r),

I
0
5(r) = ⌦2

✓
⌦

µ

◆4✏
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Î1(⌦,!) ⌘ ISB(0, 0, 0, 1, 1, 1, 1), Î2(⌦,!) ⌘ ISB(0, 0, 1, 1, 1, 1, 1),
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Î5(⌦, r) , (5)

1

[Anastasiou, Melnikov `02]



Alessandro Broggio    23/04/2021 12

Master Integrals
The system of DEs can be put in canonical form (exclude  part of a subsystem with )I′￼2(r) I′￼1(r)

where ✏ = (4�d)/2. After this transformation the prime integrals only depend on the variable
r. This can be easily checked by deriving the system of di↵erential equations respect to ⌦
for the prime integrals.

We use Canonica [4] to help us in finding the canonical basis [1]. To simplify the discus-
sion we leave the second integral I 02(r) aside for the moment since it is part of a subsystem
of di↵erential equations and only couples to I

0
1(r). For the other MIs we find the following

transformations
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where the canonical integrals are the ones without the prime. The canonical system of
di↵erential equations for the vector of integrals ~I(r) ⌘

�
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In addition the alphabet is given by

{1� r, r} . (9)

The A(r) matrix in Eq. (8) is lower triangular and can be solved iteratively. The integral
I1(r), which is the starting integral of our system of di↵erential equations, has to be computed
by direct integration. We find

I1(r) = e
2✏�E
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�✏(1� r)�3✏�(1� ✏)

2�(1� 3✏)
. (10)

Starting from this result it is possible to compute the MI I3(r) by solving the di↵erential
equation. We find
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‣ Integral  has to be computed by direct integration


‣  is obtained in -dimensions via DE


‣  is more complicated but it can still be computed in exact -dimensions using an 
integral representation for 

‣  is too complicated (integral over ) we need to expand it in 

‣ Fixing of the integration constants done by looking at specific limits in  or by comparing to 
the integrated version of these integrals (easy to obtain even in  dimensions) 
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Master Integrals
The expression between squared parenthesis can be expanded in ✏ and it is a regular ex-
pression in both limits r ! 0 and r ! 1. The first two terms on the RHS contain instead
singular contributions (delta terms and plus distributions after ✏-expansion), for example

lim
r!1

I
0
5(r) =

4e2✏�E⇡2 csc(✏⇡) csc(2✏⇡)

�(1� 4✏)�(1 + 2✏)
(1� r)�1�4✏

. (28)

The result for limr!0 I
0
5(r) is less compact and we don’t write it here explicitly. [I have to

say that in the expression for limr!0 I
0
5(r) some power corrections in r are still present. This

is not a big problem for our calculation but in principle they could be moved to the term
in the squared parenthesis if we want to have a nice separation leading-subleading.] Notice
that the form of Eq. (27) is suitable to be convoluted with O(↵s) collinear functions avoiding
divergent convolutions problems at fixed-order accuracy. In total, after expanding the result
of Eq. (27) in ✏ ! 0 we find
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
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�
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+
⇣3

3

�
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�

5⇡2

3


1

1� r

�

+

+
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
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r
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�
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r
+

2(1 + r)
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r
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�
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r

6

◆
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where we used the relation

x
�1�n ✏ = �

�(r)

(n✏)
+


1

x

�

+

� (n✏)


ln x

x

�

+

+ (n✏)2

ln2

x

x

�

+

+ . . . , (30)

to expand the boundary singular terms. In addition in the last line of Eq. (29) we collected
the Li2(x) and ⇡

2
r/6 terms together because this combination is integrable in the r ! 1

limit. In order to reproduce the cross section we need to be able to integrate our results over
r in the range r 2 [0, 1]. We obtain

Z 1

0

dr I
0
5(r) = �

1

✏3
+

7⇡2

6✏
+

62⇣3
3

+ . . . , (31)

which corresponds to the result of the integrated version of I 05 expanded in ✏. The integration
constants are 0 up to the finite order in ✏. This was verified by direct comparison to the
integrated result.
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We can directly compute the integrated version of this integrals (without  constraint)

and compare to the integral of  over r in  and we find agreement

δ(ω − n−k1)
I′￼5(r) [0,1]

This integral is related to the non-canonical integral Î4(r) by the third of Eqs. (6). The
fixing of the ✏-dependent integration constant has been performed by requiring that in the
limit r ! 0 the constant term vanishes. We find that

C4(✏) = e
2✏�E

✓
24✏
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✓
1

2
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◆
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. (18)

We have checked for several values of ✏ that the numerical integration of the non-canonical
integral Î4(r) over r 2 [0, 1] gives

Z 1

0

dr Î4(r) = �
e
2✏�E�(1� ✏)2

2✏3�(1� 4✏)
, (19)

this is also an a posteriori check that the ✏-dependent integration constant was correctly
fixed. We also checked that the resulting expression for I4(r) satisfies the initial di↵erential
equation. [seb: up to here ok.]

We now consider the last and most notorious integral of our topology: I5(r). Unfor-
tunately we are not able to perform the integral in exact d-dimensions, hence we resort in
expanding it at intermediate steps of the calculation. The di↵erential equation for I5(r) is
given by
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and the solution has the following structure
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We didn’t write the function fI5(r
0
, ✏) explicitly since it is too lengthy but we know its exact

expression in d-dimensions. Unfortunately for us the fI5(r
0
, ✏) seems to be too complicated

to be integrated analytically since it involves a 3F2 hypergeometric function. Nevertheless we
focus on obtaining a result that after integrating the di↵erential equation over r

0 accounts
correctly for the r

�n✏ terms. Indeed these are the potential dangerous ones since we see
that after transforming to the non-canonical basis (see the last of Eq. (6)), I5(r) is divided
by r which would generate delta terms and plus distributions (when expanding in ✏) in the
non-canonical integral I 05(r). In addition having control on the exact ✏ dependence of these
“boundary” terms allow us to overcome the problem of the divergent convolutions integrals
in the fixed-order calculations. Therefore we need to treat these terms with care. We follow
the strategy of expanding the function fI5(r

0
, ✏) in the limit r0 ! 0 (up to finite order in r

0)
and add and subtract this term in the following way
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where the ✏-limit in the above equation means that one needs to perform the ✏ ! 0 expansion
up to the relevant order in ✏. In eq. (22) we split the integral in two terms, the first term
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expression in d-dimensions. Unfortunately for us the fI5(r
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, ✏) seems to be too complicated

to be integrated analytically since it involves a 3F2 hypergeometric function. Nevertheless we
focus on obtaining a result that after integrating the di↵erential equation over r

0 accounts
correctly for the r

�n✏ terms. Indeed these are the potential dangerous ones since we see
that after transforming to the non-canonical basis (see the last of Eq. (6)), I5(r) is divided
by r which would generate delta terms and plus distributions (when expanding in ✏) in the
non-canonical integral I 05(r). In addition having control on the exact ✏ dependence of these
“boundary” terms allow us to overcome the problem of the divergent convolutions integrals
in the fixed-order calculations. Therefore we need to treat these terms with care. We follow
the strategy of expanding the function fI5(r

0
, ✏) in the limit r0 ! 0 (up to finite order in r
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(22)

where the ✏-limit in the above equation means that one needs to perform the ✏ ! 0 expansion
up to the relevant order in ✏. In eq. (22) we split the integral in two terms, the first term

4

structure of the

solution for I5(r)

Non-canonical I′￼5(r)

Preliminary
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Cross section at NNLO
By combining these result with the LO collinear functions and integrating over s (equivalently ) 

we get the contributions to the cross section. We set  and 
ω r

Ω = Q(1 − z) μ = Q
Kinematic corrections we have given in 1912.01585, not many details, but do we want

to digress here?
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✏
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. (4.2)

�dyn (2)2r0v
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(z) = 32
↵
2
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2
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2✏�E�[1� ✏]2
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. (4.3)

Setting the soft scale to ⌦ = Q(1 � z), the scale µ = Q, and finally expanding in ✏ we
find the following expression

�dyn (2)2r0v
NLP�soft,S1,C2

F
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◆
. (4.4)

[• Q5 This agrees with LV computation, see equation (95) in Method of

region v4 note.]

This result can be checked against equation (5.2) in [24]. However, care must be taken
as the result presented there includes also the leading power contribution to the double
real emission which we must subtract, and the transcendental pieces have been dropped.
Additionally, the above result is in agreement with the calculation of next-to-leading
power real-real emission using the expansion-by-regions method [27].

�dyn (2)2r0v
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(z) = �8
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2
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. (4.5)
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Cancellation of LL

between virtual-real


and double real in the

 term. LL 
only

CFCA C2
F

Δdyn (2)
NLP−soft, Si

∼ H0 ∫ dω J(0)
i (xa(n+pA); ω) S(2)

i (Ω, ω)
Kinematic corrections we have given in 1912.01585, not many details, but do we want

to digress here?

�dyn (2)1r1v
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(z) =
↵
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Setting the soft scale to ⌦ = Q(1 � z), the scale µ = Q, and finally expanding in ✏ we
find the following expression
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[• Q5 This agrees with LV computation, see equation (95) in Method of

region v4 note.]

This result can be checked against equation (5.2) in [24]. However, care must be taken
as the result presented there includes also the leading power contribution to the double
real emission which we must subtract, and the transcendental pieces have been dropped.
Additionally, the above result is in agreement with the calculation of next-to-leading
power real-real emission using the expansion-by-regions method [27].
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Cross section at NNLO

Kinematic corrections we have given in 1912.01585, not many details, but do we want
to digress here?
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Setting the soft scale to ⌦ = Q(1 � z), the scale µ = Q, and finally expanding in ✏ we
find the following expression
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[• Q5 This agrees with LV computation, see equation (95) in Method of

region v4 note.]

This result can be checked against equation (5.2) in [24]. However, care must be taken
as the result presented there includes also the leading power contribution to the double
real emission which we must subtract, and the transcendental pieces have been dropped.
Additionally, the above result is in agreement with the calculation of next-to-leading
power real-real emission using the expansion-by-regions method [27].
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9

There is also a contribution to  with  structureS1 CFnf

The above result still contains d - dimensional information, we now set the soft scale to
⌦ = Q(1� z), the scale µ = Q. Then, expanding in ✏ yields
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[• Q6 Other soft functions]
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which is identical to �dyn (2)2r0v
NLP�soft,S3

(z) in (4.7) up to a minus sign, such that the two cancel
each other in the expression for the full Drell-Yan cross-section at this order.
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Setting µ = Q and expanding this result
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5 Discussion

Possible discussion of the results (endpoint divergences, and other possible interesting
results) (could be part of the conclusion)

[• Q7 We should find a place for anomalous dimensions, and confirmation

of statements made in 1809.10631 such as only S1 contributing to leading

poles. There, its an assuption, no logarithmically enhanced mixing into single

gluon soft functions ]

A remark regarding the soft functions beginning at ↵2
s, namely S3, S4, and S5, is in

order. We can see from the results of expansion in ✏ for these soft functions in (4.8)
and (4.11), that they do not contribute leading logarithmic terms to the cross-section.
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The above result still contains d - dimensional information, we now set the soft scale to
⌦ = Q(1� z), the scale µ = Q. Then, expanding in ✏ yields
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[• Q6 Other soft functions]
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which is identical to �dyn (2)2r0v
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(z) in (4.7) up to a minus sign, such that the two cancel
each other in the expression for the full Drell-Yan cross-section at this order.
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Setting µ = Q and expanding this result
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5 Discussion

Possible discussion of the results (endpoint divergences, and other possible interesting
results) (could be part of the conclusion)

[• Q7 We should find a place for anomalous dimensions, and confirmation

of statements made in 1809.10631 such as only S1 contributing to leading

poles. There, its an assuption, no logarithmically enhanced mixing into single

gluon soft functions ]

A remark regarding the soft functions beginning at ↵2
s, namely S3, S4, and S5, is in

order. We can see from the results of expansion in ✏ for these soft functions in (4.8)
and (4.11), that they do not contribute leading logarithmic terms to the cross-section.
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5 Discussion

Possible discussion of the results (endpoint divergences, and other possible interesting
results) (could be part of the conclusion)

[• Q7 We should find a place for anomalous dimensions, and confirmation

of statements made in 1809.10631 such as only S1 contributing to leading

poles. There, its an assuption, no logarithmically enhanced mixing into single

gluon soft functions ]

A remark regarding the soft functions beginning at ↵2
s, namely S3, S4, and S5, is in

order. We can see from the results of expansion in ✏ for these soft functions in (4.8)
and (4.11), that they do not contribute leading logarithmic terms to the cross-section.
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 contribution

(soft-quarks)

S5

In the end only  and  contribute to the NNLO cross sectionS1 S5

Δdyn (2)
NLP−soft, Si

∼ H0 ∫ dω J(0)
i (xa(n+pA); ω) S(2)

i (Ω, ω)
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Checks

‣We calculated the contribution to the cross section directly starting from SCET Feynman 
rules at subleading power (before decoupling transformation) and we obtained the same 
result for the cross section


‣ Our results reproduce the expansion by region calculation


(P1) (P2)

p

k1

k2

p
_

k2

k1

k Q

(B5)
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k1

k2
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k2 k1

k2

k1

(B3)

k2

k1

(B2)

k2

k1

(B4)

k2

k1

Figure 2: Pentagon (Pi) and box (Bi) scalar master diagrams that contribute to eq. (8).

follow the standard approach of the method of regions [59–61], which we describe more fully
in the following section.

2.2 The method of regions

In the method of regions, singular parts of integrals in perturbative amplitudes are parti-
tioned, according to physical criteria on the loop momenta. In the case of the threshold
expansion considered in this paper, it is possible to separate completely the singular be-
haviour into non-overlapping regions, whose individual contributions reconstruct the full
integral (itself expanded about the threshold limit) when summed. As an example, con-
sider the diagram (B1) of figure 2, where we have associated the loop momentum k with a
particular internal line. One may expand this momentum in a Sudakov decomposition

k
µ =

1

2
(n� · k)nµ

+ +
1

2
(n+ · k)nµ

� + k
µ

? ⌘ k+ n
µ

+ + k� n
µ

� + k
µ

?, (9)

where we have defined dimensionless lightlike vectors

n
µ

+ =
2
p
s
p
µ
, n

µ

� =
2
p
s
p̄
µ
, n� · n+ = 2 (10)

6

‣We can convolute with the  collinear functions and 
compare with the  term at  from expansion by 
regions [Bahjat-Abbas, Sinninghe Damsté, Vernazza, White `18] 
with a collinear loop and two real soft emission. We find 
agreement

𝒪(αs)
C3

F N3LO
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Conclusions & Outlook

‣ We calculated the soft functions appearing in the NLP factorization formula for the 
Drell-Yan process at threshold, they depend on  and on convolution variables  
or 

‣ After integration over the ’s we find agreement at NNLO with the expansion by 
region method at the cross section level and with the calculation carried out 
starting directly from the SCET Feynman rules at subleading power


‣ After convolution with the  collinear functions we find agreement with the 
 term at  from expansion by regions [Bahjat-Abbas, Sinninghe Damsté, 

Vernazza, White `18]

‣ Provide useful information for the divergent convolution problem in our case


‣ Still to do: compare at NNLO to the [Hamberg, van Neerven, Matsuura `90] result for 
the cross section

Ω ω
ω1, ω2

ω

𝒪(αs)
C3

F N3LO

Thank you!


