NLP soft functions for the Drell-Yan process at threshold

Alessandro Broggio

World SCET 202I, 23rd April 2021

Outline

- Introduction, summary of the bare factorization formula at NLP
[Beneke, AB,Garny,Jaskiewicz, Szafron, Vernazza,Wang `I8] [Beneke,AB,Jaskiewicz,Vernazza `I9]
- Generalized soft functions at NLP accuracy
- Calculation: diagrams, reduction to MIs, evaluation of MIs using DE method
- Integrated results and checks at cross-section level
- Conclusions \& Outlook

Work in progress with Sebastian Jaskiewicz and Leonardo Vernazza

Motivation

- Provide insight on higher order perturbative functions in NLP factorization theorems
- Complete the check of our bare NLP factorization formula to NNLO by computing all the perturbative ingredients that are needed

Threshold Kinematics

- Threshold resummation and fixed-order expansions have been applied to many different processes at LP: Drell-Yan [Becher, Neubert, Xu `07], Higgs production [Ahrens, Becher,Neubert, Yang `09], ttbar [Ahrens,Ferroglia, Neubert,Pecjak, Yang `lO, 'I I], ttbar+V [AB,Ferroglia,Pecjak, Ossola, Yang,Signer `15,`\(16,{ }^{\prime}\) I7]...DY at NLP: Expansion by regions and LBKD [Bonocore,Laenen,Magnea, Vernazza,White`I4,'I6] [Bonocore, Laenen, Magnea, Melville,Vernazza, White `15], [Bahjat-Abbas, Sinninghe Damsté,Vernazza, White `I8]. LL resummation in SCET [Beneke,AB,Garny,Jaskiewicz, Szafron,Vernazza, Wang `I8], Factorization theorem in SCET [Beneke,AB,Jaskiewicz,Vernazza `19], Diagrammatic resummation of threshold effects at NLP [Bahjat-Abbas, Bonocore, Sinninghe Damsté, Laenen,Magnea, Vernazza, White `19] ,Generalized threshold kinematics [Lustermans, Michel, Tackmann `19].

$$
\begin{aligned}
& \qquad \frac{d \sigma}{d M^{2}} \sim \sum_{a b} \int_{\tau}^{1} \frac{d z}{z} f f_{a b}(\tau / z) \hat{\sigma}_{a b}(z) \begin{array}{c}
\text { When real radiation is } \\
\text { present in the final state }
\end{array} \rightarrow \begin{array}{c}
\hat{s} \neq Q^{2} \\
z=Q^{2} / \hat{s}
\end{array} \rightarrow 1 \\
& \hat{\sigma}_{a b}(z)=\sum_{n=0}^{\infty} \alpha_{s}^{n} \underbrace{c_{n} \delta(1-z)+\sum_{m=0}^{2 n-1}\left(c_{n m}\left[\frac{\ln ^{m}(1-z)}{1-z}\right]\right.}_{\text {LP }}+d_{+} d_{n m} \ln ^{m}(1-z))+\ldots] \\
& (1-z) \text { expansion } \\
& \begin{array}{c}
\text { LP factorization } \\
\& \text { Soft function }
\end{array} \\
& \text { [Becher, Neubert, Xu `07] }
\end{aligned}
$$

$$
S_{\mathrm{DY}}(\Omega)=\int \frac{d x^{0}}{4 \pi} e^{i \Omega x^{0} / 2} \frac{1}{\substack{\text { Alessandro Brogsio }}} \operatorname{Tr}\langle 0| \overline{\mathbf{T}}\left(Y_{+}^{\dagger}\left(x^{0}\right) Y_{-}\left(x^{0}\right)\right) \mathbf{T}\left(Y_{-}^{\dagger}(0) Y_{+}(0)\right)|0\rangle
$$

NLP Factorization formula \& Soft functions

$q \bar{q}$ channel [Beneke,AB,Jaskiewicz,Vernazza `19]

$$
\Delta(z)=\frac{1}{(1-\epsilon)} \frac{\hat{\sigma}(z)}{z} \quad \Delta_{\mathrm{NLP}}=\Delta_{\mathrm{NLP}}^{k i n}(z)+\Delta_{\mathrm{NLP}}^{d y n}(z)
$$

Kinematic contributions are related to "phase space" corrections to LP factorization formula
(LP soft function needed with (x_{0}, \vec{x}) dependence)

$$
\begin{aligned}
\Delta_{\mathrm{NLP}}^{d y n}(z)= & -\frac{2}{(1-\epsilon)} Q\left[\left(\frac{\mathfrak{h}_{-}}{4}\right) \gamma_{\perp \rho}\left(\frac{\not \chi_{+}}{4}\right) \gamma_{\perp}^{\rho}\right]_{\beta \gamma} \\
& \times \int d\left(n_{+} p\right) C^{A 0, A 0}\left(n_{+} p, x_{b} n_{-} p_{B}\right) C^{* A 0 A 0}\left(x_{a} n_{+} p_{A}, x_{b} n_{-} p_{B}\right)
\end{aligned}
$$

Generalized Soft Functions

$$
S_{i}\left(\Omega ;\left\{\omega_{j}\right\}\right)=\int \frac{d x^{0}}{4 \pi} e^{i \Omega x^{0} / 2} \int\left\{\frac{d z_{j-}}{2 \pi}\right\} e^{-i \omega_{j} z_{j-}} S_{i}\left(x_{0} ;\left\{z_{j-}\right\}\right)
$$

At NLP the power suppression is entirely coming from Lagrangian insertions in time ordered products operators

Generalized Soft Functions

- List of the soft functions with a non-zero contribution to the NLP cross section

$$
\begin{aligned}
S_{1}\left(x^{0} ; z_{-}\right)= & \frac{1}{N_{c}} \operatorname{Tr}\langle 0| \overline{\mathbf{T}}\left[Y_{+}^{\dagger}\left(x^{0}\right) Y_{-}\left(x^{0}\right)\right] \mathbf{T}\left(\left[Y_{-}^{\dagger}(0) Y_{+}(0)\right] \frac{i \partial_{\perp}^{\nu}}{i n_{-} \partial} \mathcal{B}_{\nu_{\perp}}^{+}\left(z_{-}\right)\right)|0\rangle \\
S_{3}\left(x^{0} ; z_{-}\right)= & \frac{1}{N_{c}} \operatorname{Tr}\langle 0| \overline{\mathbf{T}}\left[Y_{+}^{\dagger}\left(x^{0}\right) Y_{-}\left(x^{0}\right)\right] \\
& \times \mathbf{T}\left(\left[Y_{-}^{\dagger}(0) Y_{+}(0)\right] \frac{1}{\left(i n_{-} \partial\right)^{2}}\left[\mathcal{B}^{+\mu_{\perp}}\left(z_{-}\right),\left[i n_{-} \partial \mathcal{B}_{\mu_{\perp}}^{+}\left(z_{-}\right)\right]\right]\right)|0\rangle
\end{aligned}
$$

generates all the LL contributions

$$
\begin{aligned}
& S_{4 ; \mu \nu, b f}^{A B}\left(x^{0} ; z_{1-}, z_{2-}\right)=\frac{1}{N_{c}} \operatorname{Tr}\langle 0| \overline{\mathbf{T}}\left[Y_{+}^{\dagger}\left(x^{0}\right) Y_{-}\left(x^{0}\right)\right]_{b a} \\
& \times \mathbf{T}\left(\left[Y_{-}^{\dagger}(0) Y_{+}(0)\right]_{a f} \mathcal{B}_{\mu_{\perp}}^{+A}\left(z_{1-}\right) \mathcal{B}_{\nu_{\perp}}^{+B}\left(z_{2-}\right)\right)|0\rangle \\
& S_{5 ; b f g h, \sigma \lambda}\left(x^{0} ; z_{1-}, z_{2-}\right)=\frac{1}{N_{c}}\langle 0| \overline{\mathbf{T}}\left[Y_{+}^{\dagger}\left(x^{0}\right) Y_{-}\left(x^{0}\right)\right]_{b a} \\
& \times \mathbf{T}\left(\left[Y_{-}^{\dagger}(0) Y_{+}(0)\right]_{a f} \frac{g_{s}^{2}}{\left(i n_{-} \partial_{z_{1}}\right)\left(i n_{-} \partial_{z_{2}}\right)} q_{+\sigma g}\left(z_{1-}\right) \bar{q}_{+\lambda h}\left(z_{2-}\right)\right)|0\rangle
\end{aligned}
$$

From $\mathscr{L}^{(1)} \mathscr{L}^{(1)}$ insertions on the same (collinear) leg

$$
\begin{aligned}
\mathcal{B}_{ \pm}^{\mu} & =Y_{ \pm}^{\dagger}\left[i D_{s}^{\mu} Y_{ \pm}\right] \\
q^{ \pm} & =Y_{ \pm}^{\dagger} q_{s}
\end{aligned}
$$

Generalized Soft Functions

- Extract the soft operators matrix elements up to two emissions. At NLO only S_{1} contributes.Virtual-real was already computed in [Beneke,AB,Jaskiewicz,Vernazza `19].
- I will mainly focus on S_{1} since it is the soft function with the most interesting structure
- S_{1} matrix elements with one and two soft emissions

Generalized Soft Functions

- S_{4} and S_{5} contribute only to the structure $\delta\left(\omega_{1}-n_{-} k_{1}\right) \delta\left(\omega_{2}-n_{-} k_{2}\right)$
- S_{3} contributes only $\delta\left(\omega-n_{-} k_{1}-n_{-} k_{2}\right)$ terms

$$
\left\langle g^{K_{1}}\left(k_{1}\right) g^{K_{2}}\left(k_{2}\right)\right| \frac{1}{\left(i n_{-} \partial\right)^{2}}\left[\mathcal{B}^{+\mu_{\perp}}\left(z_{-}\right),\left[i n_{-} \partial \mathcal{B}_{\mu_{\perp}}^{+}\left(z_{-}\right)\right]\right]|0\rangle \sim
$$

- We need to interfere these matrix elements with the LP* amplitude

contribute only
to S_{1} both to C_{F}^{2}
and $C_{A} C_{F}$ with $\delta\left(\omega-n_{-} k_{1}\right)$ or $\delta\left(\omega-n_{-} k_{2}\right)$ structures

Generalized Soft Functions

contribute only
to S_{1} with
$\delta\left(\omega-n_{-} k_{1}-n_{-} k_{2}\right)$

contribute to S_{4} with $\delta\left(\omega_{1}-n_{-} k_{1}\right) \delta\left(\omega_{2}-n_{-} k_{2}\right)$

contribute to S_{5} with

$$
\delta\left(\omega_{1}-n_{-} k_{1}\right) \delta\left(\omega_{2}-n_{-} k_{2}\right)
$$

Reduction to Master Integrals

- Soft functions at LP [Li, Mantry, Petriello `II],[Becher, Bell, Marti ` I2], [Ferroglia, Pecjak, Yang `I2]
- 9 auxiliary topologies needed to reduce the soft functions (we used Litered)
- In total 8 Mls are found, 5 of them with the constraint $\delta\left(\omega-n_{-} k_{1}\right), 2$ with $\delta\left(\omega-n_{-} k_{1}-n_{-} k_{2}\right)$ and one with $\delta\left(\omega_{1}-n_{-} k_{1}\right) \delta\left(\omega_{2}-n_{-} k_{2}\right)$
- 3 Mls can be computed by direct integration
- 5 Mls computed with the differential equation method. They all belong to the same topology with the $\delta\left(\omega-n_{-} k_{1}\right)$ constraint

$$
\begin{aligned}
& S_{1}^{(2) 2 r 0 v}(\Omega, \omega)^{\delta\left(\omega-n_{-} k_{1}\right)}=C_{F}^{2} \frac{8\left(2-9 \epsilon+9 \epsilon^{2}\right)}{\epsilon^{2} \omega(\Omega-\omega)^{2}} \hat{\mathrm{I}}_{1} \\
&+C_{F} C_{A}[{\left[\frac{(2-3 \epsilon)\left(-4 \Omega+\epsilon(\omega+19 \Omega)+4 \epsilon^{2}(\omega-7 \Omega)-16 \epsilon^{3}(\omega-\Omega)\right)}{\epsilon^{2}(1-2 \epsilon) \omega \Omega(\Omega-\omega)^{2}} \hat{\mathrm{I}}_{1}\right.} \\
&-\frac{\left(1-4 \epsilon^{2}\right)}{\epsilon \omega} \hat{\mathrm{I}}_{2}+\frac{\left(3 \Omega-10 \epsilon \Omega+16 \epsilon^{2}(\omega+\Omega)\right)^{2}}{2(1-2 \epsilon) \omega \Omega} \hat{\mathrm{I}}_{3} \\
&\left.+\frac{(\Omega-3 \omega)}{2 \omega} \hat{\mathrm{I}}_{4}+\Omega \hat{\mathrm{I}}_{5}\right] \\
&=C_{F} C_{A}\left[\frac{9-20 \epsilon+12 \epsilon^{2}-2 \epsilon^{3}}{\epsilon^{2}(3-2 \epsilon) \omega^{2}(\Omega-\omega)} \hat{\mathrm{I}}_{6}+(\Omega-\omega) \hat{\mathrm{I}}_{7}\right] \\
& S_{1}^{(2) 2 r 0 v}(\Omega, \omega)^{\delta\left(\omega-n-k_{1}-n-k_{2}\right)} \\
&-C_{F} n_{f} \frac{4(1-\epsilon)^{2}}{\epsilon(3-2 \epsilon) \omega^{2}(\Omega-\omega)} \hat{\mathrm{I}}_{6} \\
& \text { Alessandro Brogzio } 233042021
\end{aligned}
$$

Master Integrals

Let's focus on this particular auxiliary topology

$$
\begin{aligned}
& P_{1}=\left(k_{1}+k_{2}\right)^{2}, \quad P_{2}=n_{+} k_{2}, \quad P_{3}=n_{-}\left(k_{1}+k_{2}\right) \\
& P_{4}=k_{1}^{2}, \quad P_{5}=k_{2}^{2}, \quad P_{6}=\left(\Omega-n_{-} k_{1}-n_{-} k_{2}-n_{+} k_{1}-n_{+} k_{2}\right), \quad P_{7}=\left(\omega-n_{-} k_{1}\right)
\end{aligned}
$$

[Anastasiou, Melnikov `02] $\delta\left(k_{1}^{2}\right)=\frac{1}{2 \pi i}\left[\frac{1}{k_{1}^{2}+i 0^{+}}-\frac{1}{k_{1}^{2}-i 0^{+}}\right] \quad$ Implement the constraints

$$
\hat{I}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}\right)=(4 \pi)^{4}\left(\frac{e^{\gamma_{E}} \mu^{2}}{4 \pi}\right)^{2 \epsilon} \int \frac{d^{d} k_{1}}{(2 \pi)^{d-1}} \frac{d^{d} k_{2}}{(2 \pi)^{d-1}} \prod_{i=1}^{7} \frac{1}{P_{i}^{\alpha_{i}}}
$$

5 Mls found, it is convenient to make the variable change $\omega \rightarrow r \Omega$ and redefine the Mls

$$
\begin{array}{ll}
I_{1}^{\prime}(r)=\frac{1}{\Omega^{2}}\left(\frac{\Omega}{\mu}\right)^{4 \epsilon} \hat{I}_{1}(\Omega, r) & I_{2}^{\prime}(r)=\frac{1}{\Omega}\left(\frac{\Omega}{\mu}\right)^{4 \epsilon} \hat{I}_{2}(\Omega, r) \\
I_{3}^{\prime}(r)=\left(\frac{\Omega}{\mu}\right)^{4 \epsilon} \hat{I}_{3}(\Omega, r) & I_{4}^{\prime}(r)=\Omega\left(\frac{\Omega}{\mu}\right)^{4 \epsilon} \hat{I}_{4}(\Omega, r) \\
I_{5}^{\prime}(r)=\Omega^{2}\left(\frac{\Omega}{\mu}\right)^{4 \epsilon} \hat{I}_{5}(\Omega, r) & \begin{array}{l}
\text { A dependence is trivial, } \\
\text { non-trivial dependence } \\
\text { only on variable } r
\end{array}
\end{array}
$$

Master Integrals

The system of DEs can be put in canonical form (exclude $I_{2}^{\prime}(r)$ part of a subsystem with $I_{1}^{\prime}(r)$)

$$
\begin{array}{ll}
\qquad \frac{d \vec{I}(r)}{d r}=\epsilon A(r) \cdot \vec{I}(r) \\
I_{1}^{\prime}(r) & =\frac{2(1-r)^{2}}{2-9 \epsilon+9 \epsilon^{2}} I_{1}(r) \\
I_{3}^{\prime}(r)=\frac{1}{\epsilon^{2}} I_{3}(r) \\
I_{4}^{\prime}(r)=-\frac{1}{\epsilon^{2}(1-r)} I_{4}(r) \\
I_{5}^{\prime}(r)=-\frac{1+r}{2 \epsilon^{2}(1-r) r} I_{4}(r)+\frac{1}{\epsilon^{2} r} I_{5}(r)
\end{array} \quad A(r)=\left[\begin{array}{cccc}
-\frac{1}{r}+\frac{3}{1-r} & 0 & 0 & 0 \\
\frac{2}{r} & -\frac{2}{r} & 0 & 0 \\
\frac{2}{r} & \frac{2}{r} & \frac{4}{1-r} & 0 \\
\frac{1}{r} & \frac{1}{r} & \frac{1}{r} & -\frac{2}{r}
\end{array}\right]
$$

- Integral $I_{1}(r)$ has to be computed by direct integration
- $I_{3}(r)$ is obtained in d-dimensions via DE
- $I_{4}(r)$ is more complicated but it can still be computed in exact d-dimensions using an integral representation for ${ }_{2} F_{1}$
- $I_{5}(r)$ is too complicated (integral over ${ }_{3} F_{2}$) we need to expand it in $\epsilon=(4-d) / 2 \rightarrow 0$
- Fixing of the integration constants done by looking at specific limits in r or by comparing to the integrated version of these integrals (easy to obtain even in d dimensions)

Master Integrals

$$
\begin{aligned}
& \frac{d I_{5}(r)}{d r}=\epsilon\left(\frac{1}{r} I_{1}(r)+\frac{1}{r} I_{3}(r)+\frac{1}{r} I_{4}(r)-\frac{2}{r} I_{5}(r)\right) \\
& I_{5}(r)=r^{-2 \epsilon}\left(C_{5}(\epsilon)+\int_{1}^{r} d r^{\prime} f_{I_{5}}\left(r^{\prime}, \epsilon\right)\right)
\end{aligned} \quad \begin{aligned}
& \text { structure of the } \\
& \text { solution for } I_{5}(r)
\end{aligned}
$$

Non-canonical $I_{5}^{\prime}(r)$

$$
\begin{aligned}
I_{5}^{\prime}(r)= & -\frac{\delta(1-r)+\delta(r)}{2 \epsilon^{3}}+\frac{1}{\epsilon^{2}}\left(2\left[\frac{1}{1-r}\right]_{+}+\left[\frac{1}{r}\right]_{+}\right)+\frac{1}{12 \epsilon}\left(5 \pi^{2} \delta(1-r)-\pi^{2} \delta(r)\right. \\
& \left.-96\left[\frac{\ln (1-r)}{1-r}\right]_{+}-24\left[\frac{\ln r}{r}\right]_{+}-\frac{48 \ln (1-r)}{r}-\frac{12 \ln r}{1-r}\right) \\
& +\frac{\zeta_{3}}{3}(28 \delta(1-r)-5 \delta(r))-\frac{5 \pi^{2}}{3}\left[\frac{1}{1-r}\right]_{+}+\frac{\pi^{2}}{6}\left[\frac{1}{r}\right]_{+}+32\left[\frac{\ln ^{2}(1-r)}{1-r}\right]_{+}+4\left[\frac{\ln ^{2} r}{r}\right]_{+} \\
& +8 \frac{\ln ^{2}(1-r)}{r}+\frac{2(1+r)}{r(1-r)} \ln (1-r) \ln (r)+\frac{\ln ^{2} r}{2(r-1)}-\frac{7 \pi^{2}}{6} \\
& +\frac{(6-7 r)}{(r-1) r}\left(\operatorname{Li}_{2}(r)-\frac{\pi^{2} r}{6}\right)+\mathcal{O}(\epsilon)
\end{aligned}
$$

We can directly compute the integrated version of this integrals (without $\delta\left(\omega-n_{-} k_{1}\right)$ constraint) and compare to the integral of $I_{5}^{\prime}(r)$ over r in $[0,1]$ and we find agreement

Cross section at NNLO

By combining these result with the LO collinear functions and integrating over ω (equivalently r) we get the contributions to the cross section. We set $\Omega=Q(1-z)$ and $\mu=Q$

$$
\begin{aligned}
& \Delta_{\mathrm{NLP}_{- \text {soft }, S_{i}}^{d y n(2)}}^{\sim} \sim H^{0} \int d \omega J_{i}^{(0)}\left(x_{a}\left(n_{+} p_{A}\right) ; \omega\right) S_{i}^{(2)}(\Omega, \omega) \\
& \begin{aligned}
\Delta_{\mathrm{NLP}-\mathrm{soft}, S_{1, C_{F} C_{A}}}^{\operatorname{dyn}(2) 1 r 1 v}(z)=\frac{\alpha_{s}^{2}}{(4 \pi)^{2}} C_{F} C_{A}\left(-\frac{8}{\epsilon^{3}}+\frac{32 \ln (1-z)}{\epsilon^{2}}-\frac{64 \ln ^{2}(1-z)}{\epsilon}+\frac{28 \pi^{2}}{3 \epsilon}\right. \\
\left.+\frac{256}{3} \ln ^{3}(1-z)-\frac{112}{3} \pi^{2} \ln (1-z)+\frac{448 \zeta(3)}{3}+\mathcal{O}(\epsilon)\right)
\end{aligned} \\
& \Delta_{\mathrm{NLP}-\mathrm{soft}, S_{1, C_{F} C_{A}}}^{\operatorname{dyn}(2) 2 r 0 v}(z)=\frac{\alpha_{s}^{2}}{(4 \pi)^{2}} C_{F} C_{A}\left(\frac{8}{\epsilon^{3}} \frac{4}{3 \epsilon^{2}}(24 \ln (1-z)-11)\right. \\
& -\frac{16}{9 \epsilon}\left(-36 \ln ^{2}(1-z)+33 \ln (1-z)+6 \pi^{2}-16\right) \\
& -\frac{256}{3} \ln ^{3}(1-z)+\frac{352}{3} \ln ^{2}(1-z)+\frac{128}{3} \pi^{2} \ln (1-z) \\
& \left.-\frac{1024}{9} \ln (1-z)-\frac{616 \zeta(3)}{3}-\frac{154 \pi^{2}}{9}+\frac{1484}{27}+\mathcal{O}(\epsilon)\right) \\
& \text { Cancellation of LL } \\
& \text { between virtual-real } \\
& \text { and double real in the } \\
& C_{F} C_{A} \text { term. LL } C_{F}^{2} \\
& \text { only }
\end{aligned}
$$

Cross section at NNLO

$$
\begin{gathered}
\Delta_{\mathrm{NLP}-\text { soft }, S_{i}}^{d y n(2)} \sim H^{0} \int d \omega J_{i}^{(0)}\left(x_{a}\left(n_{+} p_{A}\right) ; \omega\right) S_{i}^{(2)}(\Omega, \omega) \\
\Delta_{\mathrm{NLP}-\operatorname{soft}, S_{1, C_{F}^{2}}}^{d y n(2) 2 r v}(z)=\frac{\alpha_{s}^{2}}{(4 \pi)^{2}} C_{F}^{2}\left(\frac{32}{\epsilon^{3}}-\frac{128}{\epsilon^{2}} \ln (1-z)+\frac{256}{\epsilon} \ln ^{2}(1-z)-\frac{112 \pi^{2}}{3 \epsilon}\right. \\
\left.+\frac{32}{3}\left(-32 \ln ^{3}(1-z)+14 \pi^{2} \ln (1-z)-62 \zeta(3)\right)+\mathcal{O}(\epsilon)\right)
\end{gathered}
$$

There is also a contribution to S_{1} with $C_{F} n_{f}$ structure
S_{3} and S_{4} cancel each other exactly at NNLO

$$
\begin{aligned}
& \Delta_{\mathrm{NLP}-\text { sooft }, S_{3}}^{d y n}(2) 2 r 0 v \\
& \text { dit }=4 \frac{\alpha_{s}^{2}}{(4 \pi)^{2}} C_{F} C_{A}\left(\frac{\Omega^{4}}{\mu^{4}}\right)^{-\epsilon} \frac{1}{\epsilon} \frac{(1-\epsilon)}{(1-2 \epsilon)^{2}(3-2 \epsilon)} \frac{e^{2 \epsilon \gamma_{E}} \Gamma[1-\epsilon]^{2}}{\Gamma[1-4 \epsilon]} \\
& \Delta_{\mathrm{NLP}-\text { soft }, S_{4}}^{d y y(2) 2 r 0 v}(z)=-4 \frac{\alpha_{s}^{2}}{(4 \pi)^{2}} C_{F} C_{A}\left(\frac{\Omega^{4}}{\mu^{4}}\right)^{-\epsilon} \frac{1}{\epsilon} \frac{(1-\epsilon)}{(1-2 \epsilon)^{2}(3-2 \epsilon)} \frac{e^{2 \epsilon \gamma_{E}} \Gamma[1-\epsilon]^{2}}{\Gamma[1-4 \epsilon]}
\end{aligned}
$$

S_{5} contribution (soft-quarks)

$$
\Delta_{\mathrm{NLP}-\operatorname{soft}, S_{5}}^{d y n(2) 2 r v}(z)=\frac{\alpha_{s}^{2}}{(4 \pi)^{2}}\left(C_{F}^{2}-\frac{1}{2} C_{F} C_{A}\right)\left(\frac{8}{\epsilon}-32 \ln (1-z)+24+\mathcal{O}(\epsilon)\right)
$$

In the end only S_{1} and S_{5} contribute to the NNLO cross section

Checks

- We calculated the contribution to the cross section directly starting from SCET Feynman rules at subleading power (before decoupling transformation) and we obtained the same result for the cross section
- Our results reproduce the expansion by region calculation
- We can convolute with the $\mathcal{O}\left(\alpha_{s}\right)$ collinear functions and compare with the C_{F}^{3} term at $\mathrm{N}^{3} \mathrm{LO}$ from expansion by regions [Bahjat-Abbas, Sinninghe Damsté,Vernazza,White `I8] with a collinear loop and two real soft emission. We find agreement

Conclusions \& Outlook

- We calculated the soft functions appearing in the NLP factorization formula for the Drell-Yan process at threshold, they depend on Ω and on convolution variables ω or ω_{1}, ω_{2}
- After integration over the ω 's we find agreement at NNLO with the expansion by region method at the cross section level and with the calculation carried out starting directly from the SCET Feynman rules at subleading power
- After convolution with the $\mathcal{O}\left(\alpha_{s}\right)$ collinear functions we find agreement with the C_{F}^{3} term at $\mathrm{N}^{3} \mathrm{LO}$ from expansion by regions [Bahjat-Abbas, Sinninghe Damsté, Vernazza, White `I8]
- Provide useful information for the divergent convolution problem in our case
- Still to do: compare at NNLO to the [Hamberg, van Neerven, Matsuura `90] result for the cross section

Thank you!

