# Resummation of large logs in the presence of endpoint divergences in SCET 

Bianka Mecaj

Johannes Gutenberg University of Mainz
April 23, 2021

Based on work done with Z.Liu, M.Neubert and X.Wang arXiv 2009.06779
arXiv 2009.04456

## Resummation in SCET: $H \rightarrow \gamma \gamma$

## Precision calculations require large log resummation.



Coefficients of the 3 loop amplitude for $H \rightarrow \gamma \gamma$ (from our analytical results):

$$
\begin{aligned}
C_{F}\left[\frac{C_{F}}{90} L^{6}+\ldots\right]= & 0.01975 L^{6}-0.31111 L^{5}-8.74342 L^{4}-68.6182 L^{3}+\ldots \\
& +\left(0.02963 L^{5}+0.79012 L^{4}+3.57918 L^{3}+\ldots\right) n_{f}
\end{aligned}
$$

See Xing's talk on Thursday
Confirmed with numerical results in literature.
(Czakon and M. Niggetiedt, '20)

Resummation of only leading and next to leading logs is insufficient!
SCET offers a consistent framework for RG-improved PT.

## Renormalized factorization formula for $H \rightarrow \gamma \gamma$

Consistent large log resummation to higher orders requires:

- Renormalized factorization formula for the amplitude

$$
\begin{aligned}
\mathcal{M}_{b}= & H_{1}(\mu)\left\langle O_{1}(\mu)\right\rangle+2 \int_{0}^{1} d z\left[H_{2}(z, \mu)\left\langle O_{2}(z, \mu)\right\rangle-\left[H_{2}(z, \mu) \rrbracket \backslash\left\langle O_{2}(z, \mu)\right\rangle \rrbracket-\llbracket H_{2}(\bar{z}, \mu) \rrbracket \llbracket\left\langle O_{2}(\bar{z}, \mu)\right\rangle\right]\right] \\
& +\lim _{\sigma \rightarrow-1} H_{3}(\mu) \int_{0}^{M_{h}} \frac{\ell_{-}}{\ell_{-}} \int_{0}^{\sigma M_{h}} \frac{d_{+}}{\ell_{+}} J\left(M_{h} \ell, \mu\right) J\left(-M_{h} \ell, \mu\right) S\left(\ell_{+} \ell_{-}, \mu\right)
\end{aligned}
$$

- RGEs that hold beyond the LL and NLL

The hard coefficient $H_{1}$ has the most non-trivial RGE. Derived from the RG invariance of the full amplitude and the re-factorization conditions.

$$
\frac{d}{d \ln \mu} \mathcal{M}_{b}=0=\left[\left(\frac{d}{d \ln \mu}-\gamma_{11}\right) H_{1}(\mu)\right]\left\langle O_{1}(\mu)\right\rangle+\frac{d}{d \ln \mu} T_{2}(\mu)+\frac{d}{d \ln \mu} T_{3}(\mu)
$$

## Renormalization Group Equations

## Operators

$$
\begin{aligned}
& \frac{d}{d \ln \mu}\left\langle O_{1}(\mu)\right\rangle=-\gamma_{11}\left\langle O_{1}(\mu)\right\rangle \\
& \frac{d}{d \ln \mu}\left\langle O_{2}(z, \mu)\right\rangle=-\int_{0}^{1} d z^{\prime} \gamma_{22}\left(z, z^{\prime}\right)\left\langle O_{2}\left(z^{\prime}, \mu\right)\right\rangle-\gamma_{21}(z)\left\langle O_{1}(\mu)\right\rangle \\
& \frac{d}{d \ln \mu} \llbracket\left\langle O_{2}(z, \mu)\right\rangle \rrbracket=-\int_{0}^{\infty} d z^{\prime} \llbracket \gamma_{22}\left(z, z^{\prime}\right) \rrbracket \llbracket\left\langle O_{2}\left(z^{\prime}, \mu\right)\right\rangle \rrbracket-\llbracket \gamma_{21}(z)\left\langle O_{1}(\mu)\right\rangle \rrbracket \\
& \text { Jet function }
\end{aligned}
$$

$$
\frac{d}{d \ln \mu} J\left(p^{2}, \mu\right)=-\int_{0}^{\infty} d x \gamma_{J}\left(p^{2}, x p^{2}\right) J\left(x p^{2}, \mu\right) \quad \text { (Z.Liu and M.Neubert arXiv 2003.03393) }
$$

Soft function

$$
\frac{d}{d \ln \mu} S(w, \mu)=-\int_{0}^{\infty} d w^{\prime} \gamma_{S}\left(w, w^{\prime} ; \mu\right) S\left(w^{\prime}, \mu\right)
$$

(Z.Liu, BM, M.Neubert, X.Wang arXiv2005.03013)

## Hard coefficients

$$
\begin{aligned}
\frac{d}{d \ln \mu} H_{1}(\mu) & =D_{\text {cut }}(\mu)+\gamma_{11} H_{1}(\mu)+2 \int_{0}^{1} d z\left[\left[H_{2}(z, \mu) \gamma_{21}(z)-\llbracket H_{2}(z, \mu) \rrbracket z \llbracket \gamma_{21}(z) \rrbracket-\llbracket H_{2}(\bar{z}, \mu) \rrbracket \bar{z} \llbracket \gamma_{21}(\bar{z}) \rrbracket\right]\right. \\
\frac{d}{d \ln \mu} H_{2}(z, \mu) & =\int_{0}^{1} d z^{\prime} H_{2}\left(z^{\prime}, \mu\right) \gamma_{22}\left(z^{\prime}, z\right) \\
\frac{d}{d \ln \mu} \llbracket H_{2}(z, \mu) \rrbracket & =\int_{0}^{1} d z^{\prime} \llbracket H_{2}\left(z^{\prime}, \mu\right) \rrbracket \llbracket \gamma_{22}\left(z^{\prime}, z\right) \rrbracket, \quad \frac{d}{d \ln \mu} H_{3}(\mu)=\gamma_{33} H_{3}(\mu)
\end{aligned}
$$

## Anomalous dimensions

In principle using RGEs is possible to obtain "arbitrary" higher order accuracy in log resummation.

$$
\begin{aligned}
\gamma_{33} & =\Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{-M_{h}^{2}}{\mu^{2}}+2 \gamma_{q}\left(\alpha_{s}\right) \\
\gamma_{22}\left(z, z^{\prime}\right) & =-\frac{C_{F} \alpha_{s}}{\pi}\left\{\left[\ln z+\ln (1-z)+\frac{3}{2}\right] \delta\left(z-z^{\prime}\right)+z(1-z)\left[\frac{1}{z^{\prime}(1-z)} \frac{\theta\left(z^{\prime}-z\right)}{z^{\prime}-z}+\frac{1}{z\left(1-z^{\prime}\right)} \frac{\theta\left(z-z^{\prime}\right)}{z-z^{\prime}}\right]_{+}\right\}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
\llbracket \gamma_{22}\left(z, z^{\prime}\right) \rrbracket & =-\frac{C_{F} \alpha_{s}}{\pi}\left\{\left(\ln z+\frac{3}{2}\right) \delta\left(z-z^{\prime}\right)+z\left[\frac{\theta\left(z^{\prime}-z\right)}{z^{\prime}\left(z^{\prime}-z\right)}+\frac{\theta\left(z-z^{\prime}\right)}{z\left(z-z^{\prime}\right)}\right]_{+}\right\}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
\gamma_{J}\left(p^{2}, x p^{2}\right) & =\left[\Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{-p^{2}}{\mu^{2}}-\gamma^{\prime}\left(\alpha_{s}\right)\right] \delta(1-x)+\Gamma_{\text {cusp }}\left(\alpha_{s}\right) \Gamma(1, x)+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
\gamma_{S}\left(w, w^{\prime} ; \mu\right) & =-\left[\Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{w}{\mu^{2}}-\gamma_{s}\left(\alpha_{s}\right)\right] \delta\left(w-w^{\prime}\right)-2 \Gamma_{\text {cusp }}\left(\alpha_{s}\right) w \Gamma\left(w, w^{\prime}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
D_{\text {cut }}(\mu) & =4 \int_{0}^{\infty} d x K(x) \int_{1}^{1 / x} \frac{d z}{z} \llbracket \bar{H}_{2}(x z, \mu) \rrbracket \Delta_{21}(z, \mu)
\end{aligned}
$$

$D_{\text {cut }}$ depends only on the hard scale and has single logs.

$$
\begin{gathered}
D_{\mathrm{cut}}(\mu)=-\frac{N_{c} \alpha_{b}}{\pi} \frac{y_{b}(\mu)}{\sqrt{2}}\left[\frac{C_{F} \alpha_{s}}{4 \pi} 16 \zeta_{3}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} d_{\mathrm{cut}, 2}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right] \\
d_{\mathrm{cut}, 2} \sim \ln ^{2} \frac{M_{h}^{2}}{\mu^{2}}
\end{gathered}
$$

## Resummation in RG improved PT at NLP in SCET

## Resummation in RG improved PT

$$
\begin{aligned}
\mathcal{M}_{b}= & \overbrace{H_{1}(\mu)\left\langle O_{1}(\mu)\right\rangle}^{T_{1}}+2 \overbrace{\int_{0}^{1} d z\left[H_{2}(z, \mu)\left\langle O_{2}(z, \mu)\right\rangle-\llbracket H_{2}(z, \mu) \rrbracket \llbracket\left\langle O_{2}(z, \mu)\right\rangle \rrbracket-\llbracket H_{2}(\bar{z}, \mu) \rrbracket \llbracket\left\langle O_{2}(\bar{z}, \mu)\right\rangle \rrbracket\right]}^{T_{2}} \\
& +\underbrace{\left.\lim _{\sigma \rightarrow-1} H_{3}(\mu) \int_{0}^{M_{h}} \frac{d \ell_{-}}{\ell_{-}} \int_{0}^{\sigma M_{h}} \frac{d \ell_{+}}{\ell_{+}} J\left(M_{h} \ell_{-}, \mu\right) J\left(-M_{h} \ell_{+}, \mu\right) S\left(\ell_{+} \ell_{-}, \mu\right)\right|_{L P}}_{T_{3}}
\end{aligned}
$$

- At LO in RG improved PT the first two series are resummed.

$$
\begin{aligned}
T_{i} & \sim \exp \left[L \cdot g_{0}(\alpha L)+g_{1}(\alpha L)+\alpha \cdot g_{2}(\alpha L)+\ldots\right] \\
& \left.\equiv \sum_{n} \alpha^{n} \cdot L^{n+1}+\sum_{n} \alpha^{n} \cdot L^{n}+\mathcal{O}(\alpha) \text { corrections }\right]
\end{aligned}
$$

- For $H \rightarrow \gamma \gamma$ there is a contribution at LO RG improved PT from the $T_{3}$ and $T_{2}$ amplitude.
- For $\mu_{h} \sim M_{h}$ then $T_{1}$ large log contribution starts at $\mathcal{O}\left(\alpha_{s}\right)$

Note that resummation in the RG improved PT is much more accurate than the naiive log expansion of the amplitude:

$$
M \sim \sum\left(\alpha \cdot L^{2}\right)^{n}+\sum\left(\alpha^{4} \cdot L^{2 n-1}\right)+\ldots
$$

In this case large logs from higher orders are still left unresummed!

## Resummation at LO in RG improved PT $T_{3}$ amplitude

## Resummation of $T_{3}$ at LO in RG improved PT

$$
\begin{aligned}
\mathcal{M}_{b}= & \overbrace{H_{1}(\mu)\left\langle O_{1}(\mu)\right\rangle}^{T_{1}}+2 \overbrace{\int_{0}^{1} d z\left[H_{2}(z, \mu)\left\langle O_{2}(z, \mu)\right\rangle-\llbracket H_{2}(z, \mu) \rrbracket \llbracket\left\langle O_{2}(z, \mu)\right\rangle \rrbracket-\llbracket H_{2}(\bar{z}, \mu) \rrbracket \llbracket\left\langle O_{2}(\bar{z}, \mu)\right\rangle \rrbracket\right]}^{T_{2}} \\
& +\underbrace{\left.\lim _{\sigma \rightarrow-1} H_{3}(\mu) \int_{0}^{M_{h}} \frac{d \ell_{-}}{\ell_{-}} \int_{0}^{\sigma M_{h}} \frac{d \ell_{+}}{\ell_{+}} J\left(M_{h} \ell_{-}, \mu\right) J\left(-M_{h} \ell_{+}, \mu\right) S\left(\ell_{+} \ell_{-}, \mu\right)\right|_{L P}}_{T_{3}}
\end{aligned}
$$

- Cutoffs introduce higher order power corrections that should be dropped for consistency
- $\ell_{+}, \ell_{-}$integrals generate rapidity logs (collinear anomaly)
- $T_{3}$ is enhanced by two powers of log

$$
\begin{aligned}
& T_{1} \propto-2+\frac{C_{F} \alpha_{s}}{4 \pi}\left[-\frac{\pi^{2}}{3} L_{h}^{2}+\left(12+8 \zeta_{3}\right) L_{h}+\cdots\right] \\
& T_{2} \propto \frac{C_{F} \alpha_{s}}{4 \pi}\left[\frac{2 \pi^{2}}{3} L_{h} L_{m}-\frac{\pi^{2}}{3} L_{m}^{2}+\cdots\right] \\
& T_{3} \propto \frac{L^{2}}{2}+\frac{C_{F} \alpha_{s}}{4 \pi}\left[\frac{5 L^{4}}{12}+\left(L_{m}-1\right) L^{3}+\left(4-\frac{\pi^{2}}{3}+\frac{L_{m}^{2}}{2}-\frac{L_{h}^{2}}{2}-3 L_{m}\right) L^{2}+\left(\frac{2 \pi^{2}}{3}+8 \zeta_{3}\right) L-8 \zeta_{3} L_{m}+\cdots\right] \\
& L_{h}=\ln \left(-M_{h}^{2} / \mu^{2}\right), \quad L_{m}=\ln \left(m_{b}^{2} / \mu^{2}\right)
\end{aligned}
$$

$T_{3}$ amplitude contains the leading and next-to-leading large logs.

## Resummation of $T_{3}$ at LO in RG improved PT

$$
\begin{aligned}
& T_{3}^{\mathrm{LO}}=\frac{\alpha}{3 \pi} \frac{y_{b}\left(\mu_{h}\right)}{\sqrt{2}} \int_{0}^{M_{h}} \frac{d \ell_{-}}{\ell_{-}} \int_{0}^{M_{h}} \frac{d \ell_{+}}{\ell_{+}} m_{b}\left(\mu_{s}\right) e^{2 S_{F}\left(\mu_{s}, \mu_{h}\right)-2 S_{F}\left(\mu_{-}, \mu_{h}\right)-2 S_{F}\left(\mu_{+}, \mu_{h}\right)}\left(\frac{-M_{h} \ell_{-}}{\mu_{-}^{2}}\right)^{a_{\bar{F}}^{-}}\left(\frac{-M_{h} \ell_{+}}{\mu_{+}^{2}}\right)^{a_{-}^{+}}\left(\frac{-\ell_{+} \ell_{-}}{\mu_{s}^{2}}\right)^{-a_{\Gamma}^{s}} \\
& \times\left(\frac{\alpha_{s}\left(\mu_{s}\right)}{\alpha_{s}\left(\mu_{h}\right)}\right)^{-\frac{\gamma_{s}, 0}{2 \beta_{0}}} e^{-2 \gamma_{E} a_{\Gamma}^{+}} \frac{\Gamma\left(1-a_{\Gamma}^{+}\right)}{\Gamma\left(1+a_{\Gamma}^{+}\right)} e^{-2 \gamma E a_{\Gamma}^{-}} \frac{\Gamma\left(1-a_{\Gamma}^{-}\right)}{\Gamma\left(1+a_{\Gamma}^{-}\right)} e^{4 \gamma E a_{\Gamma}^{s}} G_{4,4}^{2,2}\left(\left.\begin{array}{cc}
-a_{\Gamma}^{s},-a_{\Gamma}^{s}, 1-a_{\Gamma}^{s}, 1-a_{\Gamma}^{s} \\
0, & 1, \\
0 & 0
\end{array} \right\rvert\, \frac{m_{b}^{2}}{-\ell_{+} \ell_{-}}\right) \\
& \mathcal{S}_{F}\left(\mu_{i}, \mu_{h}\right)=\frac{C_{F} \gamma_{0}^{\text {cusp }}}{4 \beta_{0}^{2}}\left[\frac{4 \pi}{\alpha_{s}\left(\mu_{i}\right)}\left(1-\frac{1}{r}-\ln r\right)+\left(\frac{\gamma_{1}^{\text {cusp }}}{\gamma_{0}^{\text {cusp }}}-\frac{\beta_{1}}{\beta_{0}}\right)(1-r+\ln r)+\frac{\beta_{1}}{2 \beta_{0}} \ln ^{2} r\right] \\
& a_{\Gamma}\left(\mu_{i}, \mu_{h}\right)=\frac{C_{F} \gamma_{0}^{\text {cusp }}}{2 \beta_{0}} \ln \frac{\alpha_{s}\left(\mu_{h}\right)}{\alpha_{s}\left(\mu_{i}\right)}, \quad r=\frac{\alpha_{s}\left(\mu_{h}\right)}{\alpha_{s}\left(\mu_{i}\right)}
\end{aligned}
$$

$G_{4,4}^{2,2}(\cdots \mid x)$ : Meijer G function
Scale fixing: $\mu_{h}^{2}=M_{h}^{2}$
$\star$ Dynamical scale setting: $\mu_{s}^{2} \sim \ell_{+} \ell_{-} \quad \mu_{ \pm}^{2} \sim \ell_{ \pm} M_{h}$
$\star G_{4,4}^{2,2}(\cdots \mid x)$ vanishes for $x \rightarrow \infty \Rightarrow$ the scale parameters should be kept larger than $m_{b}^{2}$.

## Resummed amplitude

## Resummed amplitude expanded in power series:

$$
\begin{gathered}
\mathcal{M}_{b}^{\mathrm{NLL}}=\frac{\alpha}{3 \pi} m_{b} \frac{y_{b}\left(\hat{\mu}_{h}\right)}{\sqrt{2}} \frac{L^{2}}{2} \sum_{n=0}^{\infty}(-\rho)^{n} \frac{2 \Gamma(n+1)}{\Gamma(2 n+3)} \times\left[1+\frac{3 \rho}{2 L} \frac{2 n+1}{2 n+3}-\frac{\beta_{0}}{C_{F}} \frac{\rho^{2}}{4 L} \frac{(n+1)^{2}}{(2 n+3)(2 n+5)}\right] \\
\rho=\frac{C_{F} \alpha_{s}\left(\hat{\mu}_{h}\right)}{2 \pi} L^{2}, \quad L=\ln \left(-M_{h}^{2} / m_{b}^{2}-i 0\right)
\end{gathered}
$$

Sub-leading log term doesn't agree with literature!
(Akhoury et al, '01)
The formalism can be extended to colored final states.
A very similar formula was derived for $g g \rightarrow H$
Tower of LL there agrees with literature. Disagreement at NLL.
(Liu and Penin, '17; Anastasiou and Penin, '20)

## Resummation at LO in RG improved PT $T_{2}$ amplitude

## $T_{2}$ resummation at LO in RG improved PT

- Completing the resummation at LO in RG improved PT requires resummation of large logs in $T_{2}$ amplitude

$$
T_{2}=2 \int_{0}^{1} d z\left[H_{2}(z, \mu)\left\langle O_{2}(z, \mu)\right\rangle-\llbracket H_{2}(z, \mu) \rrbracket \llbracket\left\langle O_{2}(z, \mu)\right\rangle \rrbracket-\llbracket H_{2}(\bar{z}, \mu) \rrbracket \llbracket\left\langle O_{2}(\bar{z}, \mu)\right\rangle \rrbracket\right]
$$

- $T_{2}$ has a more complicated structure $\Rightarrow$ challenging to produce an analytical result as for $T_{3}$
- Endpoint divergences are are cancelled between $\mathrm{H}_{2} \otimes \mathrm{O}_{2}$ and $\llbracket H_{2} \rrbracket \otimes \llbracket O_{2} \rrbracket$ terms


## $T_{2}$ resummation

- Expand $\mathrm{O}_{2}$ and $\mathrm{H}_{2}$ in Gegenbauer moments
(Lepage and Brodsky, '79)

$$
\begin{gathered}
H_{2} \otimes O_{2} \equiv \int_{0}^{1} \mathrm{~d} z H_{2}(z, \mu)\left\langle O_{2}(z, \mu)\right\rangle \propto \sum_{m=0}^{\infty} h_{2 m}(\mu) a_{2 m}(\mu) \\
\frac{\mathrm{d} a_{2 m}(\mu)}{\mathrm{d} \ln \mu}=-\tilde{\gamma}_{22}\left(2 m, \alpha_{s}(\mu)\right) a_{2 m}(\mu)-2 N(2 m) \tilde{\gamma}_{21}\left(2 m, \alpha_{s}(\mu)\right)\left\langle O_{1}(\mu)\right\rangle \\
N(2 m)=\frac{2(4 m+3)}{3(2 m+1)(2 m+2)}
\end{gathered}
$$

- Solution:

$$
\begin{gathered}
a_{2 m}(\mu) \propto \frac{4 \pi}{\alpha_{s}(\nu)} \frac{r^{-1+\frac{\delta \gamma_{2 m}^{(0)}}{2 \beta_{0}}}-1}{2 \beta_{0}-\delta \tilde{\gamma}_{2 m}^{(0)}}+\left(\tilde{\gamma}_{21}^{(0)}(2 m)+\frac{\beta_{1}}{\beta_{0}}\right) \frac{r^{\frac{\delta \tilde{\gamma}_{2 m}^{(0)}}{2 \beta_{0}}}-1}{\delta \tilde{\gamma}_{2 m}^{(0)}}+\left(-\frac{\delta \tilde{z}_{2 m}^{(0)}}{2 \beta_{0}} \frac{\beta_{1}}{\beta_{0}}-\frac{\delta \tilde{\gamma}_{2 m}^{(1)}}{2 \beta_{0}}\right)\left[\frac{r^{\frac{\delta \gamma_{2 m}^{(0)}}{2 \beta_{0}}}-1}{\delta \tilde{\gamma}_{2 m}^{(0)}}+\frac{r^{-1+\frac{\delta \tilde{\gamma}_{2 m}^{(0)}}{2 \beta_{0}}}-1}{2 \beta_{0}-\delta \tilde{\gamma}_{2 m}^{(0)}}\right] \\
r=\frac{\alpha_{s}\left(\mu_{h}\right)}{\alpha_{s}(\mu)}
\end{gathered}
$$

Requires the two loop coefficient of the Brodsky-Lepage kernel in Gegenbauer space: $\delta \tilde{\gamma}_{2 m}^{(1)}$

## $T_{2}$ resummation

- Divergent part comes from the mixing of $O_{2}$ with $O_{1}$. The divergent part of the convolution

$$
\left(H_{2}(\mu) \otimes O_{2}(\mu)\right)_{\text {div }} \propto \sum_{m=0}^{\infty} \frac{6 N(2 m)}{\beta_{0}+2 C_{F}\left(2 H_{2 m+1}-3\right)} O_{1}(\nu)
$$

- For the subtraction terms need to solve the RGEs and then expand the result in Gegenbauer moments:
The divergent part is exactly the same as for $H_{2} \otimes O_{2}$ and they cancel!

$$
\left(\llbracket H_{2}(z, \mu) \rrbracket \otimes \llbracket O_{2}(z, \mu) \rrbracket+\llbracket H_{2}(\bar{z}, \mu) \rrbracket \otimes \llbracket O_{2}(\bar{z}, \mu) \rrbracket\right)_{\text {div }} \propto \sum_{m=0}^{\infty} \frac{6 N(2 m)}{\beta_{0}+2 C_{F}\left(2 H_{2 m+1}-\frac{1}{(2 m+1)(2 m+2)}-3\right)} O_{1}(\nu)
$$

To perform the resummation it is easier to solve the equations numerically.
(Work in progress)

## Conclusions

- Resummation of logarithms for precision purposes should be treated in RG improved PT
- We have shown the first subleading power observable in SCET consistently treated in RG improved PT
- The framework sets the basis for other application for large log resummation; for instance with colored final states $g g \rightarrow H$

