# A Prescription for Endpoint Divergences and Renormalization in Higgs Decay Induced by a b Quark Loop

## Xing Wang





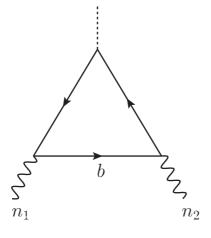
With Z. Liu, B. Mecaj, M. Neubert and M. Schnubel 2009.04456, 2009.06779 and to appear

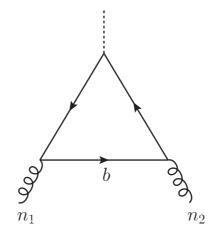
World SCET 2021, April 22

#### **Motivation**

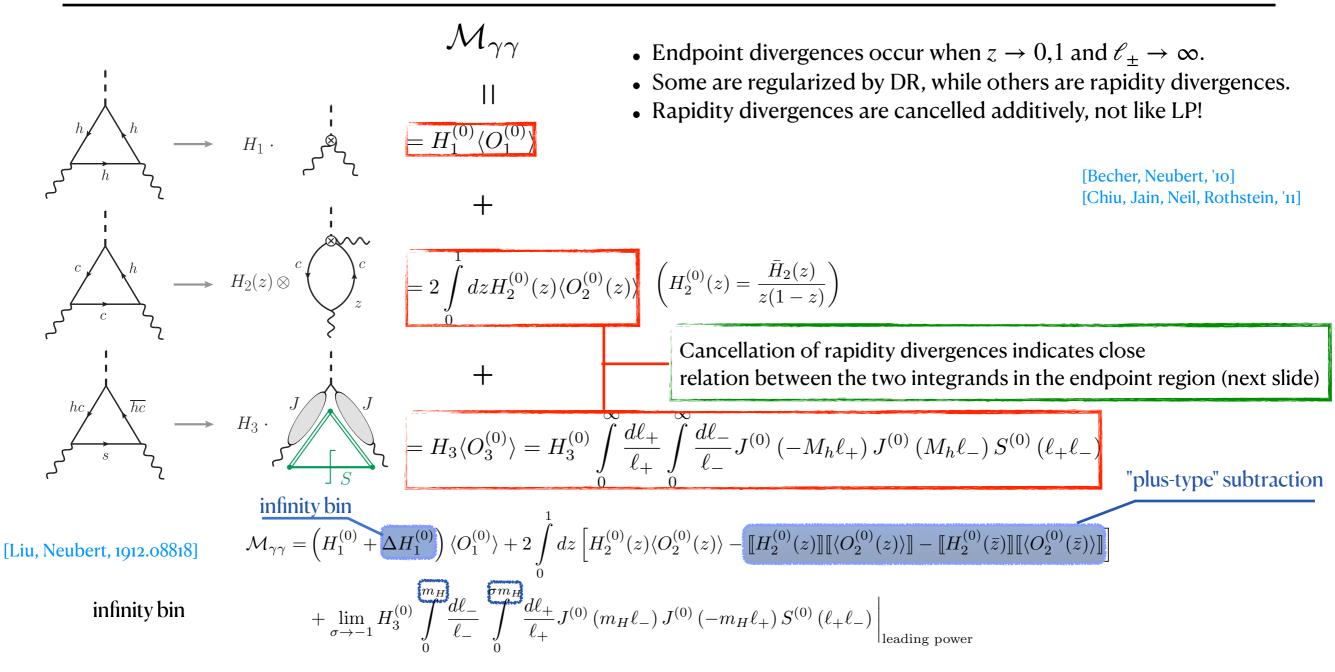
- □ Scale hierarchy  $M_h^2 \gg m_b^2$  in  $H \to \gamma \gamma(gg)$  induced by a b quark loop indicates factorization, and is relevant in precision studies.
- This is a NLP problem (SCET2), and is sufficiently complicated but simple enough (e.g., the operator basis is small) to investigate NLP SCET.
- Despite of some consensus of several generic features of NLP SCET, establishing a renormalized factorization and dealing with endpoint divergences are not fully understood yet.

  [Beneke et al., Moult et al., 2016-2020]
- ☐ I will briefly sketch how we renormalize and use "plus-type subtraction" to deal with endpoint divergences.





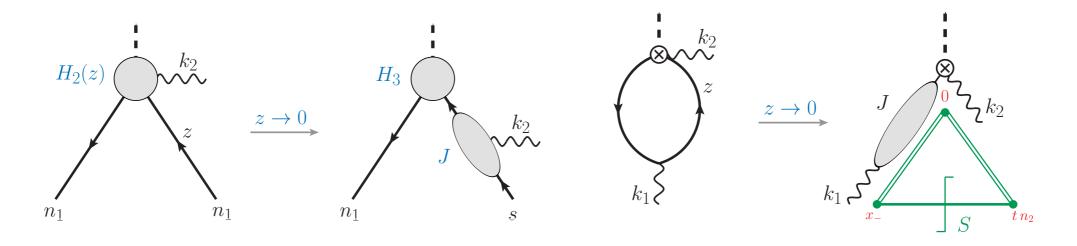
#### Bare Factorization: Plus-Type Subtraction and Emergence of Cutoff



- [f(z)] means that one retains only the leading terms of the function f(z).
- Cutoffs are emergent after adding back the subtraction and double counting is removed, which is  $\Delta H_1^{(0)}$ .
- Rapidity regulator is no longer needed due to plus-type subtraction, but cutoffs don't commute with renormalization.
- The factorization formula for  $gg \rightarrow h$  is very similar to its abelian cousin (to appear).

#### Re-factorization conditions

- ☑ Re-factorization conditions relate the integrands in the endpoint region, but they only make sense in D dimension.
- $\blacksquare$  These can also be used to obtain relations among renormalization factors, e.g.,  $Z_J$  and  $\llbracket Z_{22} \rrbracket$
- ☑ They also ensure all order relations between "left-over" terms due to cutoffs when renormalizing operators.



$$[\![H_2^{(0)}(z)]\!] = \frac{[\![\bar{H}_2^{(0)}(z)]\!]}{z} = -\frac{H_3^{(0)}}{z}J\left(zM_h^2\right) \qquad [\![\langle\gamma\gamma|O_2^{(0)}(z)|h\rangle]\!] = -\frac{1}{2}\varepsilon_\perp^*\left(k_1\right)\cdot\varepsilon_\perp^*\left(k_2\right)\int\limits_0^\infty \frac{d\ell_+}{\ell_+}J^{(0)}\left(-M_h\ell_+\right)S^{(0)}\left(zM_h\ell_+\right)$$

- $\ \ \, \ \,$  These conditions also hold in  $gg \to h$  amplitude (to appear).
- ☑ Re-factorization should be generic to deal with endpoint divergences, including SCET1. See the following two talks.

## Renormalization ( $h \rightarrow \gamma \gamma \& gg \rightarrow h$ )

- ☑ There are operator mixings when renormalizing them, please refer to our papers.
- ☑ The renormalization for the non-abelian case is slightly different, since the amplitude itself is not IR safe.

  Extra divergences can be accounted for by a global renormalization:

$$\mathcal{M}_{gg}(\mu) = Z_{gg}^{-1}(\mu)\mathcal{M}_{gg}^{(0)}, \text{ with } Z_{gg}^{-1} = 1 + \frac{\alpha_s(\mu)}{4\pi} \left[ \frac{2C_A}{\epsilon^2} + \frac{-2C_A \ln(-M_h^2/\mu^2) + \beta_0}{\epsilon} \right] + \mathcal{O}(\alpha_s^2)$$

☑ This global renormalization factor changes the renormalization factors for the operators, and therefore the anomalous dimensions. Here are Z factors of the soft function at NLO as a comparison:

$$Z_S^{gg}(w, w'; \mu) = \delta(w - w') + \frac{\alpha_s(\mu)}{4\pi} \left\{ \left[ (C_F - C_A) \left( \frac{2}{\epsilon^2} - \frac{2}{\epsilon} \ln \frac{\omega}{\mu^2} \right) - \frac{3C_F - \beta_0}{\epsilon} \right] \delta(w - w') - \frac{4(C_F - C_A/2)}{\epsilon} w \Gamma(w, w') \right\}$$

$$Z_S^{\gamma\gamma}(w, w'; \mu) = \delta(w - w') + \frac{\alpha_s(\mu)}{4\pi} \left\{ \left[ C_F \left( \frac{2}{\epsilon^2} - \frac{2}{\epsilon} \ln \frac{\omega}{\mu^2} \right) - \frac{3C_F}{\epsilon} \right] \delta(w - w') - \frac{4C_F}{\epsilon} w \Gamma(w, w') \right\}$$

☑ We derived the non-abelian renormalization factors, not only from consistency condition, but also using the method in [Bodwin, et al., 2101.04872]. See details in our coming papers.

## Renormalized Factorization: Plus-Type Subtraction and Cutoff

$$\mathcal{M}_{\gamma\gamma} = H_{1}(\mu) \langle O_{1}(\mu) \rangle + 2 \int_{0}^{1} dz \left[ H_{2}(z,\mu) \langle O_{2}(z,\mu) \rangle - \left[ H_{2}(z,\mu) \right] \left[ \langle O_{2}(z,\mu) \rangle \right] - \left[ H_{2}(\bar{z},\mu) \right] \left[ \langle O_{2}(z,\mu) \rangle \right] \right]$$

$$+ \lim_{\sigma \to -1} H_{3}(\mu) \int_{0}^{M_{h}} \frac{d\ell_{-}}{\ell_{-}} \int_{0}^{\sigma M_{h}} \frac{d\ell_{+}}{\ell_{+}} J\left( M_{h}\ell_{-},\mu \right) J\left( -M_{h}\ell_{+},\mu \right) S\left( \ell_{+}\ell_{-},\mu \right) \bigg|_{\text{leading power}}$$

- $\blacksquare$  This master formula is free of any divergences for  $H \to \gamma \gamma$ . Its non-abelian cousin is similar, but needs  $Z_{gg}^{-1}$ .
- ☑ To establish such a renormalized formula is not so straightforward:
  - O With cutoffs in the convolution, exchanging integration limits doesn't commute with renormalization, e.g.,

$$S(w,\mu) = \int_{0}^{\infty} dw' Z_{S}(w,w';\mu) S^{(0)}(w') \quad \text{v.s} \quad \int_{0}^{\sigma M_{h}^{2}} \frac{dw'}{w'} S^{(0)}(w') \times \cdots$$

After exchanging the integration limits when expressing everything in terms of renormalized ones, there are some "left-over" terms. We proved to all orders that the sum of these terms is purely **hard**, and it can be absorbed into  $H_1$ . The same procedure also applies to  $gg \to H$ .

$$\begin{split} & \underset{}{\text{infinity bin}} & \underset{}{\text{left-over}} \\ & H_1(\mu) = \left(H_1^{(0)} + \Delta H_1^{(0)} - \delta H_1^{(0)} - \delta' H_1^{(0)}\right) Z_{11}^{-1} \\ & + 2 \int_0^1 dz \left[H_2^{(0)}(z) Z_{21}^{-1}(z) - \llbracket H_2^{(0)}(z) \rrbracket \llbracket Z_{21}^{-1}(z) \rrbracket - \llbracket H_2^{(0)}(\bar{z}) \rrbracket \llbracket Z_{21}^{-1}(\bar{z}) \rrbracket \right] \end{split}$$

#### Some Results: Logarithms at 3-loop and "NLL"

$$\mathcal{M}_b^{\gamma\gamma} \propto \frac{L^2}{2} - 2 + \frac{C_F \alpha_s \left(\hat{\mu}_h\right)}{4\pi} \left[ -\frac{L^4}{12} - L^3 - \frac{2\pi^2}{3} L^2 + \left(12 + \frac{2\pi^2}{3} + 16\zeta_3\right) L - 20 + 4\zeta_3 - \frac{\pi^4}{5} \right] \\ + C_F \left( \frac{\alpha_s \left(\hat{\mu}_h\right)}{4\pi} \right)^2 \left[ \frac{C_F}{90} L^6 + \left( \frac{C_F}{10} - \frac{\beta_0}{30} \right) L^5 + d_4^{\mathrm{OS}} L^4 + d_3^{\mathrm{OS}} L^3 + \dots \right] \\ 0.01975 L^6 - 0.31111 L^5 - 8.74342 L^4 - 68.6182 L^3$$

- It is in perfect agreement with fixed order calculation in [Czakon, Niggetiedt, '20].
- The subleading logs are not smaller at all than the leading ones, due to the larger coeffs. So it only makes sense to consider it in RG-improved perturbation theory. But we present below resummation at "NLL" for just academic purpose:

$$\mathcal{M}_{\gamma\gamma}^{\rm NLL} \propto \frac{L^2}{2} \sum_{n=0}^{\infty} \left(-\rho_{\gamma}\right)^n \frac{2\Gamma(n+1)}{\Gamma(2n+3)} \left[ 1 + \frac{3\rho_{\gamma}}{2L} \frac{2n+1}{2n+3} - \frac{\beta_0}{C_F} \frac{\rho_{\gamma}^2}{4L} \frac{(n+1)^2}{(2n+3)(2n+5)} \right] \qquad \qquad \rho_{\gamma} = \frac{C_F \alpha_s(\mu_h) L^2}{2\pi}$$

$$\mathcal{M}_{gg}^{\rm NLL}(\hat{\mu}_h) \propto \frac{L^2}{2} \sum_{n=0}^{\infty} \left(-\rho_g\right)^n \frac{2\Gamma(n+1)}{\Gamma(2n+3)} \left[ 1 + \frac{C_F}{C_F - C_A} \frac{3\rho_g}{2L} \frac{2n+1}{2n+3} - \frac{\beta_0}{C_F - C_A} \frac{\rho_g^2}{4L} \frac{(n+1)^2}{(2n+3)(2n+5)} \right] \qquad \rho_g = \frac{(C_F - C_A)\alpha_s(\mu_h) L^2}{2\pi}$$

- $\blacksquare$  At NLL, non-abelian case is the same as its abelian cousin by  $C_F \to C_F C_A$  (not true beyond cusp).
- For details and how to obtain predictions in RG-improved perturbation theory, see Bianka's talk.

#### Conclusion and take-home message

- We derived the renormalized factorization formula in the "plus-type subtraction" scheme to get rid of endpoint divergences;
- Its prediction is in perfect agreement with QCD three-loop calculations;
- As far as "cusp" terms are concerned, abelian and non-abelian seem the same under the replacement  $C_F \to C_F C_A$ ;
- See Bianka's talk about RGEs and resummation beyond "cusp";

Thank you! See you in the discussion session.

## Backup: Renormalization ( $h \rightarrow \gamma \gamma$ )

$$\{O_1,\ O_2(z),\ \llbracket O_2(z)
rbracket\} \qquad O_i(\mu) = Z_{ij} \otimes O_j^{(0)} \qquad \qquad \mathbf{Z} = \left(egin{array}{ccc} Z_{11} & 0 & 0 \ Z_{21} & Z_{22} & 0 \ \llbracket Z_{21}
rbracket\} & 0 & \llbracket Z_{22}
rbracket \end{array}
ight).$$

- $\square$  Renormalization of  $O_1$  is trivial, which is just the quark mass renormalization
- $\ ^{oldsymbol{\boxtimes}}$  The diagonal  $Z_{22}$  can be understood by noticing that the coloured fields in  $O_2$  have the same structure as in leading-twist LCDA of a transversely polarized vector meson: Brodsky-Lepage kernel
- $\ ^{\ }$   $Z_{22}$  is not enough to absorb all the UV divergence in  $O_2$ . The remaining can be absorbed by the mixing with  $O_1$ , which is just  $Z_{21}$ . Since the final states are photons, the mixing is natural
- $\ensuremath{\,^{\square}}$  The renormalization of  $\ensuremath{\,^{\square}} O_2(z) \ensuremath{\,^{\parallel}}$  can be obtained by the limiting behaviour of that of  $O_2$

$$J^{(0)} \otimes J^{(0)} \otimes S^{(0)} = O_3^{(0)} = T \left\{ h \bar{\xi}_{n_1} \xi_{n_2}, i \int d^D x \mathcal{L}_{q\xi_{n_1}}^{(1/2)}(x), i \int d^D y \mathcal{L}_{\xi_{n_2} q}^{(1/2)}(y) \right\} + \text{h.c.}$$

☑ NLP SCET Lagrangian doesn't need renormalization, so the renormalization of  $O_3^{(0)}$  comes from that of the scalar current  $J_S = h\bar{\xi}_{n_1}\xi_{n_2}$ , which is known to three loops:

$$\int_0^\infty d\ell_- \int_0^\infty d\ell_+ Z_J(\ell'_-, \ell_-) Z_J(\ell'_+, \ell_+) Z_S(\ell_-\ell_+, \omega) = Z_{33} \delta(\omega - \ell'_-\ell'_+)$$

- $\[ \[ \] Z_J \]$  is related to  $\[ \[ \] Z_{22} \]$  by re-factorization formula and we prove that it can also be obtained from first principle
- $\ ^{ullet}Z_{S}$  can be obtained from the above relation and recently confirmed by Bodwin et al. first principle calculation at NLO