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Motivation

O Scale hierarchy M,f > m,f in H — yy(gg) induced by a b quark loop
indicates factorization, and is relevant in precision studies.

O Thisis a NLP problem (SCET?2), and is sufficiently complicated but simple
enough (e.g., the operator basis is small) to investigate NLP SCET.

O Despite of some consensus of several generic features of NLP SCET,
establishing a renormalized factorization and dealing with endpoint
divergences are not fully understood yet. ‘Beneke et al.. Moult et al.. 2016-2020]

O [ will briefly sketch how we renormalize and use "plus-type subtraction” to
deal with endpoint divergences.




Bare Factorization: Plus-Type Subtraction and Emergence of Cutoff

M’YW’ « Endpoint divergences occur whenz — 0,1 and £, — oo.
: 1 o Some are regularized by DR, while others are rapidity divergences.
« Rapidity divergences are cancelled additively, not like LP!
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[Becher, Neubert, '10]
_|_ [Chiu, Jain, Neil, Rothstein, '11]

| “Cancellation of rapidity divergences indicates close

: + gelation between the two integrands in the endpoint region (next slide)
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| ) 0 ) "plus-type” subtraction
mﬁmt bin . _—
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o— leading power

[f(2)] means that one retains only the leading terms of the function f(z).
Cutoffs are emergent after adding back the subtraction and double counting is removed, which is AHI(O).
Rapidity regulator is no longer needed due to plus-type subtraction, but cutoffs don't commute with renormalization.

The factorization formula for gg — h is very similar to its abelian cousin (to appear).
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Re-factorization conditions

& Re-factorization conditions relate the integrands in the endpoint region, but they only make sense in D dimension.
& These can also be used to obtain relations among renormalization factors, e.g., Z; and [Z32]

& They also ensure all order relations between "left-over" terms due to cutoffs when renormalizing operators.
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™ These conditions also hold in gg — h amplitude (to appear).

& Re-factorization should be generic to deal with endpoint divergences, including SCET1. See the following two talks.



Renormalization (& — yy & gg — h)

& There are operator mixings when renormalizing them, please refer to our papers.

& The renormalization for the non-abelian case is slightly different, since the amplitude itself is not IR safe.

Extra divergences can be accounted for by a global renormalization:

N , _ Qg 2C —2C 4 In(—M?/p?) + B
Mg (1) = Zggl(M)Mg%)7 with Zgg1 =1+ ) 2A + aln(= My /i) =+ O(ay)

A7 € €

& This global renormalization factor changes the renormalization factors for the operators,

and therefore the anomalous dimensions. Here are Z factors of the soft function at NLO as a comparison:

25 (w, ' 1) = 6w — ) + 22 { (Cr-cn (2 - 2m ) - 2 o - ) - A gy, w’)}

€ €

2 (w, ' 1) = 8w — ) + LU { [cF (3 2 i) - 3CF] S(w — ') — Ll (w, w’)}

€

& We derived the non-abelian renormalization factors, not only from consistency condition, but also

using the method in [Bodwin, et al., 2101.04872]. See details in our coming papers.



Renormalized Factorization: Plus-Type Subtraction and Cutoff

| Moy =Hi(p) (O1(p)) +2/0 dz {Hz(z,u) (O2(z, ) — [Ha(z, )] [(O2(2, p))] = [Ha (2, w)][{O2(%, M)>]]]
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& This master formula is free of any divergences for H — yy. Its non-abelian cousin is similar, but needs Zg_gl.

& To establish such a renormalized formula is not so straightforward:

O With cutoffs in the convolution, exchanging integration limits doesn't commute with renormalization, e.g.,

)+ > o)
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0 0
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& After exchanging the integration limits when expressing everything in terms of renormalized ones,

there are some "left-over” terms. We proved to all orders that the sum of these terms is purely hard,

and it can be absorbed into H,. The same procedure also applies to gg — H.

infinity bin left-over

Hy(p) = (Hl(o) + AHfO) — 5H1(O) — 5’H1(0)> Zl_l1 mixing
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Some Results: Logarithms at 3-loop and "NLL"

L? Cro (i) [ L* 272 272 7]
W — —24 — 2| =[5 T L2 (124 T +16(3 | L — 20 + 4(3 — —
My x5 =20 = |71 g Lo (12t 106 i

N 2
o (fin) Cr ¢ Cr  Bo\ ;5 , 0874, ;08 3 4
C —L L d;>L ds°L )
T\ Tun ) [90 T\ 70 3 i i |
0.01975L% — 0.31111L° — 8.74342L* — 68.6182L°

A1t is in perfect agreement with fixed order calculation in [Czakon, Niggetiedt, '20].

[ The subleading logs are not smaller at all than the leading ones, due to the larger coeffs. So it only makes sense

to consider it in RG-improved perturbation theory. But we present below resummation at "NLL" for just

academic purpose:

MNLL O<L2 i (—p)" 2I'(n + 1) 3py2n+1 o é (n+1)* _Cpozs(,uh)L2
T2 = T T(2n 4+ 3) 2L 2n+3 Crp4L (2n+3)(2n +5) Py = .
> [ 2
MNEL i) e N (—py)" L+l |, Cr 3pg2ntl b Py (n+1)? Dy = (Cr — Ca)as(pn)L
% — T T(2n+3) Cr—Ca2L2n+3 Cp—Cadl (2n+3)(2n+5) g o

[ At NLL, non-abelian case is the same as its abelian cousin by Cx — C — C,, (not true beyond cusp).

[A For details and how to obtain predictions in RG-improved perturbation theory, see Bianka's talk.



Conclusion and take-home message

[ We derived the renormalized factorization formula in the "plus-type subtraction”
scheme to get rid of endpoint divergences;

[A Its prediction is in perfect agreement with QCD three-loop calculations;

[A As far as "cusp” terms are concerned, abelian and non-abelian seem

the same under the replacement Cr. = Cr — Cy;
MSee Bianka's talk about RGEs and resummation beyond "cusp’;

[A Re-factorization conditions play a key role in our case, and we believe they are

generic to get rid of endpoint divergences — hand it over to Philipp's talk.

Thank you! See you in the discussion session.



Backup: Renormalization (7 — yy)

Zy 0 0
0;(p) = Z;; @ 0¥ Z=| Zu Zw 0 |.
& Renormalization of O is trivial, which is just the quark mass renormalization

™ The diagonal Z,, can be understood by noticing that the coloured fields in O, have the same structure as in leading-twist

LCDA of a transversely polarized vector meson: Brodsky-Lepage kernel
o Z,, is not enough to absorb all the UV divergence in O,. The remaining can be absorbed by the mixing with O, which is
just Z,;. Since the final states are photons, the mixing is natural

& The renormalization of [O2(z)] can be obtained by the limiting behaviour of that of O,

JO o g0 g s0) = Oéo) =T {hfnlﬁm,i/deﬁééﬁ)(x), i / dDyESLZ) (y)} + h.c.

@ NLP SCET Lagrangian doesn't need renormalization, so the renormalization of 03(0) comes from that of the scalar current

Jg= hé_nlfnz, which is known to three loops:

/ dg_/ d£_|_ZJ(£/_,E_)ZJ(K;,E_F)ZS(f_E_F,W) = 2335(w—€/_€’+)
0 0

o Z,is related to [ Z5] by re-factorization formula and we prove that it can also be obtained from first principle

M Z can be obtained from the above relation and recently confirmed by Bodwin et al. first principle calculation at NLO
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