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Differentiation Is Key To Machine Learning And Science

Computing derivatives is key to many algorithms
Machine learning (back-propagation, Bayesian inference, uncertainty quantification)
Scientific computing (modeling, simulation)

When working with large codebases or dynamically-generated programs, manually writing
derivative functions becomes intractable

Community has developed tools to create derivatives automatically




Existing AD Approaches

Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
Provide a new language designed to be differentiated
Requires rewriting everything in the DSL and the DSL must support all operations in original code
Fast if DSL matches original code well

Operator overloading (Adept, JAX)

Provide differentiable versions of existing language constructs (double => adouble, np.sum =>
jax.sum)

May require writing to use non-standard utilities

Often dynamic: storing instructions/values to later be interpreted %



Existing AD Approaches

Source rewriting
Statically analyze program to produce a new gradient function in the source language
Re-implement parsing and semantics of given language
Requires all code to be available ahead of time

Difficult to use with external libraries




Existing Automatic Differentiation Pipelines
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Case Study: Vector Normalization

//Compute magnitude in 0O(n)
double mag(double[] x);

//Compute norm in 0(n”2)
void norm(double[] out, double[] in) {

for (int i=0; i<n; i++) {
out[i] = in[i] / mag(in);
}
}




Case Study: Vector Normalization

//Compute magnitude in 0O(n)
double mag(double[] x);

//Compute norm in O(n)
void norm(double[] out, double[] in) {

double res = mag(in);
for (int 1=0; i<n; i++) { :>
out[i] = in[i] / res;

}
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Optimization & Automatic Differentiation
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Optimization & Automatic Differentiation

— : d_res = 0.0
for i=0..n { . o mag(in) or i=
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3
} Vmag(d_in, d_res)
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Optimization & Automatic Differentiation
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Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!
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% Enzyme Approach

Performing AD at low-level lets us work on optimized code!
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Why Does Enzyme Use LLVM?

- Generic low-level compiler infrastructure with many
frontends

“Cross platform assembly”
- Many backends (CPU, CUDA, etc)
- Well-defined semantics

Large collection of optimizations and analyses




Case Study: ReLU3

C Source

double relu3(double x) {
double result;
if (x > 0)
result = pow(x, 3);
else
result = 0;
return result;

b

Enzyme Usage

double diffe_relu3(double x) {
return __enzyme_autodiff(relu3, x);
}

LLVM

define double @relu3(double %x)

entry »cmp = %X > 0
br %cmp, cond.true, cond.end
cond. true

%call = pow(%x, 3)
br cond.end

\4

%result = phi [%call, cond.truel, [0, entry]
cond.end .
ret %result




Case Study: ReLU3

Active Instructions

define double @relu3(double %x)

/’V

%»cmp = %X > 0 entr
br %cmp, cond.true, cond.end y

cond. true

%call = pow(%x, 3)
br cond.end

cond.end v

%result = phi [%call, cond.truel, [0, entry]
ret %result

)




define double @diffe_relu3(double %x, double %differet)

1]
(SIS )
(SIS )

alloca %result’
alloca %call’

Allocate & zero
slloca X' shadow memory for

cond. true b'”‘%/cmp' SOTE B, d\i active values

6:ésult = phi [%call, cond.true], [0, entry]

(o]

entry

%call = pow(%x, 3) 4\\ cond.end
br cond.end
; deleted return

’

%result’ = 1.0

Q{;reverse_cond.end 4/}




define double @diffe_relu3(double %x, double %differet)

alloca %result’ =
alloca %call’

0.0
TP i Compute adjoints
kemp = %x > @ for active instructions

br %cmp, cond.true, cond.end

cond. true
A(/ \\\‘

~
| — 4\\ cond.end

entry

%call = pow(%x, 3) %result = phi [%call, cond.truel, [0, entry]
LEr cond. end

; deleted return

’

hresult’ = 1.0

qi;reverse_cond.end 4/)

l !

reverse_cond. true %tmp_res’ = load %result’
%hcall’” += if %x > @ then %tmp_res’ else 0
reverse_cond.end

%df = 3 x pow(%x, 2) ‘(”,,f’store %result’ = 0.0
%tmp_call’ = load %call Dr %Cmp, reverse_cond.true, reverse_entry
%X’ += %df * %tmp_call’ \\, #,)

store %call’ = 0.0
Qii reverse_entry

%0 = load %x reverse_entry
ret %0
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define double @diffe_relu3(double %x, double %differet)

alloca %result’ =
alloca %call’

.0
R p Compute adjoints
kemp = %x > @ for active instructions

br %cmp, cond.true, cond.end

cond. true
N\

%call = pow(%x, 3) ﬂ;;esult = phi [%call, cond.truel, [0, entry]

br cond.end
N ; deleted return

1l
[SS RN RN

entry

4\\ cond.end

%result’ = 1.0

Qﬁ;reverse_cond.end 4/}

l

reverse_cond. true %tmp_res’ = load %result’
%call’ += if %x > @ then %tmp_res’ else 0

%df = 3 x pow(%x, 2) store %result’ = 0.0 reverse_cond.end
%tmp_call’ = load %call br %cmp, reverse_cond.true, reverse_entry

%x’ += %df * %tmp_call’

store %call’ = 0.0
Qii reverse_entry

%0 = load %x reverse_entry
ret %0
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define double @diffe_relu3(double %x)

Post
%cmp = %X > 0 ] Optlmlza“OH

entr
y br %cmp, reverse_cond.true, reverse_entry

%3 = 3 * pow(%x,
br reverse entry

reverse_cond. true

%0 = phi [%3, reverse_cond.true], [0, entry] :] reverse_entry
ret %0

Essentially the optimal hand-written gradient!

double diffe_relu3(double x) {
double result;

if (x > 0)

result = 3 * pow(x, 2);
else

result = 0;

return result;

}
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Challenges of Low-Level AD

Low-level code lacks information necessary to compute adjoints

void f(void* dst, void* src) {

memcpy(dst, src, 8);
}

-

/\

void grad_f(double* dst, doublex dst’,
doublex src, doublex src’) {
// Forward Pass
memcpy (dst, src, 8);

// Reverse Pass
src’[0] += dst’[0];
dst’[0] = 0;
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void grad_f(float* dst, float* dst’,
floatx src, float* src’) {
// Forward Pass
memcpy(dst, src, 8);

// Reverse Pass
src’[0] += dst’[0];

dst’[0] = 0;
src’[1] += dst’[1];
dst’[1] = 0;




Challenges of Low-Level AD

New interprocedural dataflow analysis that detects the underlying type of data

Each value has a set of memory offsets : type

Perform series of fixed-point updates through instructions

struct Type { X Type

?2%518 0: Pointer —|0: Double
} 8: Pointer —|0: Integer
X = Type*;

types(x) = {[0]:Pointer, [0,0]:Double, [0,8]:Pointer, [0,8,0]:Integer} %
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Custom Derivatives & Multisource

One can specify custom forward/reverse passes of functions by attaching metadata

__attribute_ ((enzyme("augment", augment func)))
__attribute_ ((enzyme(“"gradient", gradient func)))
double func(double n);

Enzyme leverages LLVM’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM
bitcode is available for all potential differentiated functions before AD
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Experimental Setup

Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

Enzyme: -02 Enzyme % -02
Ref: | Enzyme % 02 02
Tapenade: Tapenade -02 -02

Adept: Adept -02 -02

24




Speedup of Enzyme

1.0,
B Enzyme

I Ref
B Tapenade
BN Adept

Higher is Better

0.0 O X
' LSTM BA GMM Euler RK4 FFT Bruss

Enzyme is 4.2x faster than Reference! %




PyTorch-Enzyme & TensorFlow-Enzyme
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import torch
from torch_enzyme import enzyme

# Create some initial tensor
inp = ..

# Apply foreign function to tensor
out = enzyme("test.c", “f").apply(inp)

# Derive gradient
out.backward()
print(inp.grad)

// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

import tensorflow as tf
from tf_enzyme import enzyme

# Create some initial tensor
inp = tf.Variable(..)

# Use external C code as a regular TF op
out = enzyme(inp, filename=“test.c",
function=“f")

# Results is a TF tensor
out = tf.sigmoid(out)

// diffe_dupnoneed specifies not recomputing the output
void diffef(float* inp, float* d_inp, size_t n, float* d_out) {
__enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)@, d_out);

}
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% Enzyme

Tool for performing reverse-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
4.2x speedup over AD before optimization

State-of-the art performance with existing tools

Differentiate GPU kernels (come to GTC talk for more info!)

Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow
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% Enzyme

Tool for performing reverse-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
4.2x speedup over AD before optimization

State-of-the art performance with existing tools

Differentiate GPU kernels (come to GTC talk for more info!)

Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow
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