0

Post-Optimization Automatic Differentiation by
Synthesizing LLVM

-~

“w*

Fk I
D~ 4

William S. Moses Valentin Churavy

wmoses@mit.edu H I
° Differentiable Programming Workshop
Argonne

April 7, 2021

NATIONAL LABORATORY

-

¥ |

Wiliam S. Moses ~ Valentin Churavy |Ludger Paehler Johannes Doerfert

g

Jan Huckelheim S Hari Krishna Michel Schanen Paul Hovland
Narayanan

2

Differentiation Is Key To Machine Learning And Science

Computing derivatives is key to many algorithms
Machine learning (back-propagation, Bayesian inference, uncertainty quantification)
Scientific computing (modeling, simulation)

When working with large codebases or dynamically-generated programs, manually writing
derivative functions becomes intractable

Community has developed tools to create derivatives automatically

Existing AD Approaches

Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
Provide a new language designed to be differentiated
Requires rewriting everything in the DSL and the DSL must support all operations in original code
Fast if DSL matches original code well

Operator overloading (Adept, JAX)

Provide differentiable versions of existing language constructs (double => adouble, np.sum =>
jax.sum)

May require writing to use non-standard utilities

Often dynamic: storing instructions/values to later be interpreted %

Existing AD Approaches

Source rewriting
Statically analyze program to produce a new gradient function in the source language
Re-implement parsing and semantics of given language
Requires all code to be available ahead of time

Difficult to use with external libraries

Existing Automatic Differentiation Pipelines

~ Optimize
4 / > < \\\ \\\

| | \
—— L___ | ‘

—T \\ EXE
CodeGen a
///

Case Study: Vector Normalization

//Compute magnitude in 0O(n)
double mag(double[] x);

//Compute norm in 0(n”2)
void norm(double[] out, double[] in) {

for (int i=0; i<n; i++) {
out[i] = in[i] / mag(in);
}
}

Case Study: Vector Normalization

//Compute magnitude in 0O(n)
double mag(double[] x);

//Compute norm in O(n)
void norm(double[] out, double[] in) {

double res = mag(in);
for (int 1=0; i<n; i++) { :>
out[i] = in[i] / res;

}
3

Optimization & Automatic Differentiation

O (n?) O (n) O (n)
f =0..n { o = mag(in) = 0.0
o [i] ?= mag(in) Optimize for EO-]-?_{ AD for —n.;g {
} =
¥ }

Optimization & Automatic Differentiation

— : d_res = 0.0
for i=0..n { . o mag(in) or i=
' i . £ -0 for i=n..0 {
: out[il /= mag(in) Optimize it AD d_res += d_out[i].
3
} Vmag(d_in, d_res)
0, (nz) 0 (”2)
for i=e..n { fOQ_iZQ';Odfoutm...
. out[i] /= mag(in) AD Vmag(d_in, d_res)
3

10

Optimization & Automatic Differentiation

0 (n?) O (n) 0 (n)
— : d_res = 0.0
for i=0..n { o es T mag(in) PR
: B . f =0 . . for i=n..0 {
: out[i] /= mag(in) Optimize Ogui[i] 9={res AD d_res += d_out[i].

} 3
Vmag(d_in, d_res)

2
0, (nz) 0, (n) O <n2)
o for i=n..0 { £ T
TP o ol : d_res = d_out[il]. or n- ¢ :
i e TR wa S [opimae) i

}

12

Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

0, (nz) O (n)
for i=0.. = mag(in)
% [i] 9={mag() Optimize for EOj-L{ AD
! 3
0, <n2> 0O <n2>
for i=0..n { for =n.;@ { .
. [i] /= mag(in) AD : vmag () Optimize

O (n)

= 0.0
for i=n..0 {
+=

¥
Vmag (

[l
)

O (nz)

for i=n..0 {
d_res =
Vmag (

[i].
d_res)

% Enzyme Approach

Performing AD at low-level lets us work on optimized code!

C

julia
Lower

&
N

Optimize Optimize

Enzyme %> ’
L

CodeGen =
of

13

Why Does Enzyme Use LLVM?

- Generic low-level compiler infrastructure with many
frontends

“Cross platform assembly”
- Many backends (CPU, CUDA, etc)
- Well-defined semantics

Large collection of optimizations and analyses

Case Study: ReLU3

C Source

double relu3(double x) {
double result;
if (x > 0)
result = pow(x, 3);
else
result = 0;
return result;

b

Enzyme Usage

double diffe_relu3(double x) {
return __enzyme_autodiff(relu3, x);
}

LLVM

define double @relu3(double %x)

entry »cmp = %X > 0
br %cmp, cond.true, cond.end
cond. true

%call = pow(%x, 3)
br cond.end

\4

%result = phi [%call, cond.truel, [0, entry]
cond.end .
ret %result

Case Study: ReLU3

Active Instructions

define double @relu3(double %x)

/’V

%»cmp = %X > 0 entr
br %cmp, cond.true, cond.end y

cond. true

%call = pow(%x, 3)
br cond.end

cond.end v

%result = phi [%call, cond.truel, [0, entry]
ret %result

)

define double @diffe_relu3(double %x, double %differet)

1]
(SIS)
(SIS)

alloca %result’
alloca %call’

Allocate & zero
slloca X' shadow memory for

cond. true b'”‘%/cmp' SOTE B, d\i active values

6:ésult = phi [%call, cond.true], [0, entry]

(o]

entry

%call = pow(%x, 3) 4\\ cond.end
br cond.end
; deleted return

’

%result’ = 1.0

Q{;reverse_cond.end 4/}

define double @diffe_relu3(double %x, double %differet)

alloca %result’ =
alloca %call’

0.0
TP i Compute adjoints
kemp = %x > @ for active instructions

br %cmp, cond.true, cond.end

cond. true
A(/ \\\‘

~
| — 4\\ cond.end

entry

%call = pow(%x, 3) %result = phi [%call, cond.truel, [0, entry]
LEr cond. end

; deleted return

’

hresult’ = 1.0

qi;reverse_cond.end 4/)

l !

reverse_cond. true %tmp_res’ = load %result’
%hcall’” += if %x > @ then %tmp_res’ else 0
reverse_cond.end

%df = 3 x pow(%x, 2) ‘(”,,f’store %result’ = 0.0
%tmp_call’ = load %call Dr %Cmp, reverse_cond.true, reverse_entry
%X’ += %df * %tmp_call’ \\, #,)

store %call’ = 0.0
Qii reverse_entry

%0 = load %x reverse_entry
ret %0

18

define double @diffe_relu3(double %x, double %differet)

alloca %result’ =
alloca %call’

.0
R p Compute adjoints
kemp = %x > @ for active instructions

br %cmp, cond.true, cond.end

cond. true
N\

%call = pow(%x, 3) ﬂ;;esult = phi [%call, cond.truel, [0, entry]

br cond.end
N ; deleted return

1l
[SS RN RN

entry

4\\ cond.end

%result’ = 1.0

Qﬁ;reverse_cond.end 4/}

l

reverse_cond. true %tmp_res’ = load %result’
%call’ += if %x > @ then %tmp_res’ else 0

%df = 3 x pow(%x, 2) store %result’ = 0.0 reverse_cond.end
%tmp_call’ = load %call br %cmp, reverse_cond.true, reverse_entry

%x’ += %df * %tmp_call’

store %call’ = 0.0
Qii reverse_entry

%0 = load %x reverse_entry
ret %0

19

define double @diffe_relu3(double %x)

Post
%cmp = %X > 0] Optlmlza“OH

entr
y br %cmp, reverse_cond.true, reverse_entry

%3 = 3 * pow(%x,
br reverse entry

reverse_cond. true

%0 = phi [%3, reverse_cond.true], [0, entry] :] reverse_entry
ret %0

Essentially the optimal hand-written gradient!

double diffe_relu3(double x) {
double result;

if (x > 0)

result = 3 * pow(x, 2);
else

result = 0;

return result;

}

20

Challenges of Low-Level AD

Low-level code lacks information necessary to compute adjoints

void f(void* dst, void* src) {

memcpy(dst, src, 8);
}

-

/\

void grad_f(double* dst, doublex dst’,
doublex src, doublex src’) {
// Forward Pass
memcpy (dst, src, 8);

// Reverse Pass
src’[0] += dst’[0];
dst’[0] = 0;

21

void grad_f(float* dst, float* dst’,
floatx src, float* src’) {
// Forward Pass
memcpy(dst, src, 8);

// Reverse Pass
src’[0] += dst’[0];

dst’[0] = 0;
src’[1] += dst’[1];
dst’[1] = 0;

Challenges of Low-Level AD

New interprocedural dataflow analysis that detects the underlying type of data

Each value has a set of memory offsets : type

Perform series of fixed-point updates through instructions

struct Type { X Type

?2%518 0: Pointer —|0: Double
} 8: Pointer —|0: Integer
X = Type*;

types(x) = {[0]:Pointer, [0,0]:Double, [0,8]:Pointer, [0,8,0]:Integer} %

22

Custom Derivatives & Multisource

One can specify custom forward/reverse passes of functions by attaching metadata

__attribute_ ((enzyme("augment", augment func)))
__attribute_ ((enzyme(“"gradient", gradient func)))
double func(double n);

Enzyme leverages LLVM’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM
bitcode is available for all potential differentiated functions before AD

23

Experimental Setup

Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

Enzyme: -02 Enzyme % -02
Ref: | Enzyme % 02 02
Tapenade: Tapenade -02 -02

Adept: Adept -02 -02

24

Speedup of Enzyme

1.0,
B Enzyme

I Ref
B Tapenade
BN Adept

Higher is Better

0.0 O X
' LSTM BA GMM Euler RK4 FFT Bruss

Enzyme is 4.2x faster than Reference! %

PyTorch-Enzyme & TensorFlow-Enzyme

26

import torch
from torch_enzyme import enzyme

Create some initial tensor
inp = ..

Apply foreign function to tensor
out = enzyme("test.c", “f").apply(inp)

Derive gradient
out.backward()
print(inp.grad)

// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

import tensorflow as tf
from tf_enzyme import enzyme

Create some initial tensor
inp = tf.Variable(..)

Use external C code as a regular TF op
out = enzyme(inp, filename=“test.c",
function=“f")

Results is a TF tensor
out = tf.sigmoid(out)

// diffe_dupnoneed specifies not recomputing the output
void diffef(float* inp, float* d_inp, size_t n, float* d_out) {
__enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)@, d_out);

}

27

% Enzyme

Tool for performing reverse-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
4.2x speedup over AD before optimization

State-of-the art performance with existing tools

Differentiate GPU kernels (come to GTC talk for more info!)

Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow

Acknowledgements

28

Thanks to James Bradbury, Alex Chernyakhovsky, Hal Finkel, Laurent Hascoet, Mike Innes, Tim
Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Lizhou Sha, Yo Shavit, Dhash
Shrivathsa, Nalini Singh, Miguel Young de la Sota, and Alex Zinenko

William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship
DESC0019323.

Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443.

This research was supported in part by LANL grant 531711. Research was sponsored by the United
States Air Force Research Laboratory and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000.

interpreted as representing the official policies, either expressed or implied, of the United States Ali

The views and conclusions contained in this document are those of the authors and should not be 0
Force or the U.S. Government. @

29

% Enzyme

Tool for performing reverse-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
4.2x speedup over AD before optimization

State-of-the art performance with existing tools

Differentiate GPU kernels (come to GTC talk for more info!)

Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow

END

