EP-SFT R&D Activities

IT R&D advisory group meeting, 22 September 2021

ntroduction

- groups, the IT department and collaborating HEP institutes
 - * Geant4, ROOT, Gaudi, Key4hep, CernVM, ...
- * The group provides a common infrastructure and expertise to the CERN experiments (e.g. LCG software stacks >400 packages)
- * Started an R&D program to embrace new hardware and software architectures to cope with HL-LHC computing requirements

* The group develops and maintains common scientific software for the physics experiments in close collaboration with the EP experimental

Simulation

- * Ongoing R&D along 3 axes:
 - * Improvements to the Geant4 CPU implementation
 - * Fast simulation with traditional parametrization and ML
 - * GPU-based prototypes participle transport
- * **G4HepEm**: specialized stepping/tracking for EM physics in Geant4
- * AdePT: Demonstrator for EM physics transport simulation on GPUs
- FastSim: seamless integration of classical parametrization (GFlash) and ML generative models

ROOT

- Fast-path from RNTuple to analysis results: million events / second into histograms, for actual analyses
 - * New I/O formats, faster compression algorithms, lossy compression, object stores, etc.
- * With convenient, multi-threaded, distributed compute model: RDataFrame
 - * Implicit multi-core, distribute computing, bulk-processing multiple events, elastic resource allocation, etc.
- * High-throughput ML training out of RDataFrame / RNTuple
- * High-performance ML inference of ONNX models
- * **RooFit:** PDFs with vectorization and CUDA, auto-differentiation
- * WebGUI + Graphics

CernVM-FS

- Seamless container image ingestion
 - * Automatically ingestion them in / cvmfs/unpacked.cern.ch
- Kubernetes-native publisher
 - * Publishing to gateway services from ephemeral writable shell
- * Client performance improvements for very large applications (e.g. Tensorflow)

R&D on Experimental Technologies (WP7)

- Turnkey software stack (Key4Hep)
- Faster simulation
 - * Machine learning based fast, generic, simulation techniques
 - Embraced within the SFT simulation activities
- **Efficient Analysis** *
 - Design data structures and interfaces to support very high throughput analysis
 - * Embraced within the ROOT activities
- * Reconstruction at high pileup (ACTS)

* Flexible and modern software stack, ready for physics studies for experiments at future colliders

