

FECOS

Matej Šekoranja

Miha Vitorovič

matej.sekoranja@cosylab.com

miha.vitorovic@cosylab.com

Rok Štefanič

rok.stefanic@cosylab.com

 $\frac{1}{2} \frac{1}{2} \frac{1}$ the best people make cosylab

What is FECOS?

- FrontEnd Control System
- A LabVIEW object oriented framework running on all FECs
 - Uniform and transparent network communication
 - Standard services like error reporting and logging
 - Access to timing system
 - □ *Etc…*
- Each FEC will be able to run multiple applications FECOS components

Progress overview

- STM based publish/subscribe messaging
- Design for real-time actions

Real-time requirements

- Single and multipoint ADC
 - Performing data acquisition with precise time-stamp
- Close loop motion control
 - Precise timing and triggering required
- Local timing generation
- Watchdog supervision of real-time tasks

Real-time design

- Instructions and best practices for all required use cases
 Most use cases can and should be solved in hardware
- Real-time tasks only available in Op state
 - Runs in parallel to normal component Op method
- Integration of real-time tasks with watchdog
 - Monitoring the health of real-time task
 - Handle watchdog requests in the least disruptive way
 - Long actions need to be able to abort on request from framework

cosvlab

Real-time tasks in FECOS

- Real-time tasks only available in Op state
- Runs in parallel to normal component *Op* method
- Fast-reacting actions
- On-demand real-time actions

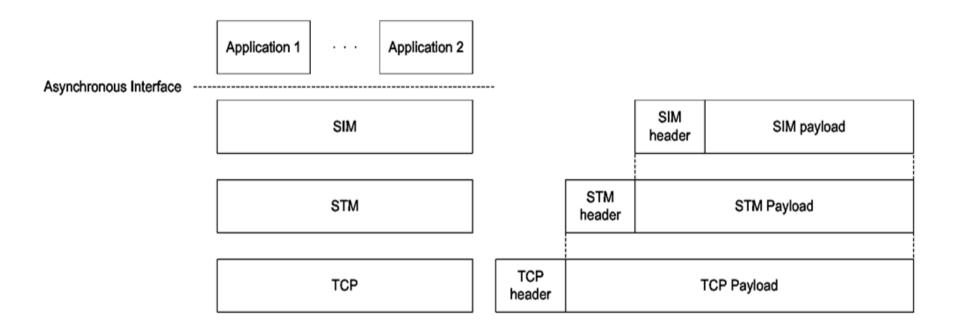
Fast-reacting actions

- Started when component enters the Op state by framework
- Waiting for external trigger hardware event
- Can start the action instantly on trigger

On-demand real-time actions_____

- Started by FECOS trigger user command or component event
- Start-up time delay not important
- Performs real-time actions when running
- Exists when finished

Watchdog

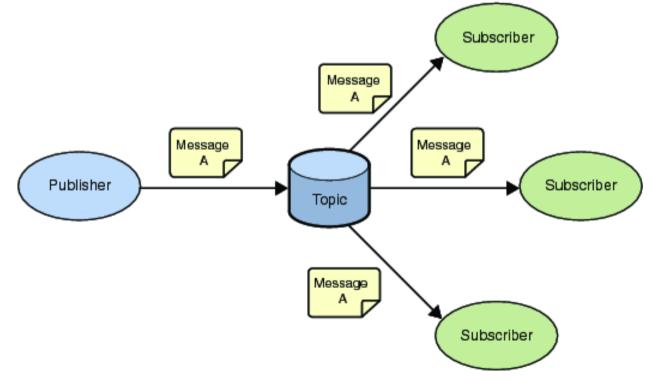

- Each component monitors its own real-time action
 Reports to device watchdog
- Supervision of the actions through real-time FIFO
- Component running multiple real-time methods in parallel not supported
 - Multiple loops inside one method not a problem
- Real-time action that runs indefinitely may be required to exit

- What is STM?
 - NI LabView Simple TCP Messaging
 - Very thin layer above TCP
- Why STM?
 - Support for LV-RT (library provided by NI)
 - We don't want to have "LV-RT DIM problems" again

Data Size	Meta Data ID	Data
(32 bits)	(16 bits)	

SIM

- STM is too "raw"
- SIM (SImple Messaging) is layer above STM



- Defines general header that removes need of layers above to define another header – focus only on payload
- Will be used by MTS, VAA... to be used as "the" MA communication protocol

MAPS

cosylab

- Replacement for DIM
- MAPS (MedAustron Publish-Subscribe) is a messaging protocol based on SIM
- Light-weight client implementation (easy to implement, even in LabView)
- MAPS clients connect to MAPS server

MAPS (cntd.)

"Tag" based

- Every published message is given a set of tags
- Every subscription is defined by set of of tags
- Subscriber gets a message only if message tag-set is superset of subscription tag-set, e.g.
 - ["current"] will get all the currents
 - ["current", "VA1"] will get all the currents of virtual acc. 1
 - [] give me all the messages
 - ["private1208"] something private
- Automatic (transparent) reconnection/re-subscription of clients to a server

Roadmap

cosylab

- XML parsing
- Dynamic component instantiation
- TINE integration
- Real-time capabilities
- Logging and error handling
 - Remote
- Entering/Leaving state methods
- Reduction of data points
- Scratch Pad
- Basic device support
- Improving development experience