HSF Curriculum page

IIIIIIIIII



General remarks on the curriculum page

Main impression: great ongoing effort, very promising platform for HEP!
Caveat: the layout is not ideal. Some remarks and suggestions in these slides to make it better.

HEP Software Foundation Working Groups ~ Activities v Communication~ Projects & Support ~

Towards a HEP Software Training
curriculum

Idea

Training in software and computing are essential ingredients for the success of any HEP experiment. As most experiments have similar basic
prerequisites (Unix shell, Python, C++, ...) we want to join our efforts and create one introductory software training curriculum that serves HEP
newcomers the software skills needed as they enter the field, and in parallel, instill best practices for writing software.

The curriculum is comprised of a set of standardized modules, so that students can focus on what is most relevant to them.

The modules

e Want to study? Click on the book lll or video EEl button

a \Want tna rantrihuta? Click an the wranch

U 4=



Title and intro

“Curriculum”

This hints to a full program to validate, a whole checklist of skills to achieve.

Of course there are basic prerequisites that most of newcomers should go through, but some
may not find several advanced modules relevant for their research. Thus the coining of
curriculum could be daunting.

The mindset of this page is to have everything modular. You come and help yourself.

Thus | suggest to rename it for instance: “HSF training center”, or “HSF training modules”
This would better translate the cool feature of this supermarket of tutorials. And it is still valid
even if this effort is ongoing.

U 4



Ordering / categories

Classification by level
| find several drawbacks in having lists of modules split by level:
- most folks entering HEP have some programming experience, let it be limited. What is
exactly meant by “beginner” compared to “intermediate”?
- some ‘flavors’ in HEP activities make students to work on advanced tools, e.g MC event
generators, quite early. If they are listed in “advanced”, this can be scary for them.
- some tutorials could benefit from having a mix of levels, with the first part very basic and
the later sections geared toward experienced users. This is not possible if the modules are

strictly segmented by level.

My suggestion? See first an idea of a “module legend” (next slide) that will show how these
caveats can be addressed (actually suppressed).

U 4



The module legend

Taking advantage of the modularity

| suggest to present the modules in a square.

There could be a dummy example at the top of the page (or not, as long as there is a legend).

a

v

How to read symbols:

alpha version: features to be added

beta version: done, but under tests

stable release, bug disinfected

R

The Tutorial Title
Some explanations of the module
with some links to wikipedia articles

if relevant.

Status: O
Prerequisite(s): none
Material: @ &
Developer zone: /

Credits —

here we solve the issue of
level-splitting with an extra
advantage: the user knows
what is needed to follow a
given module.

no need for a legend, the
symbols are explained by the
context

goes to author list.
They need credits.


http://www.en.wikipedia.org

A possible layout

Robust over time

Let’s imagine this page in two or three years: way more content! How to present it nicely
without falling into the ‘scrolling-down-paradigm’? Users should quickly find what they want.
Suggestion: a gallery display, organized into categories such as (some examples):

Basics «— bare minimum: shell, ssh, python, ROOT.
Collaborative tools «— git, CI/CD, ...

C++ corner <« all the rest is.. python. Almost all.
Machine Learning <« basics, GPU interfacing,

HEP tools «— matplotlib for our nice plots,

MC event generators, etc...
Documentation < Sphinx, doxygen, etc...



R

A little demo



HEP Software Foundation Working Groups ~ Activities ~ Communication~ Projects & Support ~

How to read symbols:

HEP Software Training Center

Basics

a alpha version: features to be added
beta version: done, but under tests
@ stable release, bug disinfected

The Unix Shell

Introduction to the unix command
line/shell

Status: o
Prerequisite(s): none
Material: @ £
Developer zone:
Credits o

SSH
Introduction to the Secure Shell (SSH)

Status: O
Prerequisite(s): none
Material: @ £
Developer zone: s
Credits o

Collaborative tools & good practices

Version control: git

Getting fluent in version controlling
the code while allowing collaborators
to improve it.

Status: o
Prerequisite(s): none
Material: @ £
Developer zone:
Credits o

Build systems: cmake

Introduction to the build systems
cmake.

A simple analysis

A simple analysis workflow using CMS
open data.

CI/CD with gitlab

Continuous integration and
deployment with gitlab.

Status: O

Prerequisite(s): Version control: git
Material: @ £

Developer zone:

Credits o

Status: O Status: O
Prerequisite(s): none Prerequisite(s): none
Material: @ £ Material: @ £
Developer zone: s Developer zone: Pl
Credits Credits

CI/CD with github Unit testing
Continuous integration and Unit testing in python.

deployment with github.

Status: O

Prerequisite(s): Version control: git
Material: @ £

Developer zone: s

Credits o

Status: 0

Prerequisite(s): Programming with
Python

Material: @ £

Developer zone:

Credits o




Happy to exchange more!

These slides are suggestions to improve the HSF curriculum, as of January 26, 2021.
Happy to brainstorm more on that.
Good luck with everything and ...

Thanks for reading!



